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1. Purpose. The principal purpose of this ETL is b. ASTM D-5922, Standard Guide for

to introduce the reader to geostatistical techniques Analysis of Spatial Variation in Geostatistical Site
and to demonstrate their basic utility with respect Investigations.

to HTRW site investigations. The ETL also will

include a discussion of statistical concepts that c. ASTM D-5549, Standard Guide for

support the science of geostatistics. Practical Content of Geostatistical Site Investigations.

aspects of geostatistical techniques will be dis-

cussed in two ways. First, practical references will

be made, when appropriate, during the discussion 4. Distribution Statement.  Approved for public
of statistical concepts, and second, examples release, distribution is unlimited.

describing several aspects of the use of geosta-

tistical techniques in HTRW site investigations will

be presented and discussed in a section of this ETI5. Discussion.

specifically dedicated to providing working exam-

ples. This ETL also will include a brief literature a. Geostatistics is a powerful tool to assess
and software review; review of geostatistical appli- relationships among data obtained from various
cations; comparison of information that is gener-  locations. It allows optimization of sample spac-
ated with geostatistical methods to that informationing and frequency. More importantly, geostatistics
obtained using classical statistical methods; and ~also allows one to effectively estimate parameter

some more recent geostatistical methods, such as values in areas between actual sample points and
conditional simulation. quantify the uncertainty of the estimated values.

This can be very valuable in risk management and
design decision making. This ETL builds upon the

2. Applicability. This letter applies to all principles introduced in EM 200-1-2.

USACE commands having HTRW investigation,

design, and remedial action responsibility within b. The ETL contains examples which illus-
the military or civil works programs. trate the statistical principles discussed throughout

the document. Not every application of geosta-
tistics to HTW projects could be illustrated, how-

3. References. Documents referenced in this ever, and the user must be aware of the basic
ETL are listed. Appendix A contains additional ~ Principles and seek appropriate applications. Spe-
references useful in geostatistical application. cific examples of typical cost-effective applications

of geostatistics are also given here.

a. EM 200-1-2, Technical Project Planning
Guidance for HTRW Data Quality Design.
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(1) Geostatistics, by the construction of a vari- modeled as described in section 4-6. Lastly, the
ogram based on preliminary sampling, can be used model is used to perform block kriging, as
to determine theypical separation of sampling described in section 2-4 for blocks of a size com-
points that delineate uncorrelated data The parable to the daily excavation area/volume. The
range of the variogram is used as a basis for selecblock-kriged values can then be used for estimating
ting a sample spacing that minimizes costs and  the treatment plant loading, etc., related to that
provides independent data for determining, for block. The kriging also quantifies the possible
example, average exposure values for risk assess-variance in the average concentration for each
ment. First, an adequate number of preliminary  block that can be used to manage the risk of
samples are analyzed from the site (refer to sec- operating a treatment plant.
tion 4-3). Second, a variogram is constructed using
techniques described in Chapter 4. Third, the range (3) Exposure concentrations for risk assess-
of the variogram, as defined in section 2-3 is deter-ment purposes can be computed, using geostatis-
mined. Lastly, the range or some multiple or frac- tics, even though the site characterization data are
tion of it, is chosen for future sample spacing. Thesomewhat clustered or were collected using biased
variogram should be updated as new data are col- sampling strategies. Assuming the data are
lected. For example, the variogram may indicate already available and adequate in number (refer to
data spaced more than 200 ft apart are uncorrelatestction 4-4), the first step is to compute a sample
Closure sampling may then be proposed to be variogram, as described in Chapter 4. Second, the
spaced every 200 ft or moreat) an excavation. variogram is modeled as described in section 4-6.
Smaller spacing results in unnecessary duplication Next, this model is used in performing a block
of information and unneeded expenditure of funds. kriging operation over the inferred exposure area,
as described in section 2-3. Finally, the block
(2) Geostatistics, through block kriging, can  kriging value can be used, along with the kriging
yield estimates of the average concentrations to be varianceto determine the exposure point con-
encounteredin a typical daily excavation area/ centration, assuming the data were normally
volume. For applications such as excavation of nedrstributed (or were transformed to be normally
surface contamination, two-dimensional block distributed).
kriging could be used to estimate mean contaminant
concentration for specific excavation areas. (4) The last example describes the use of geo-
Although this document does not address three-  statisticsto quantify project risk for excavation
dimensional block kriging for estimating mean con- or treatment volumes Even with ample site char-

centrations within given volumes, additional guid- acterization point data (borings or wells), the limits
ance and tools for three-dimensional kriging are of the treatment zone are imperfectly defined.
available through references cited in Appendix A. Geostatistics allows one to evaluate the risk that
Alternatively, one can use two-dimensional block the size, and therefore cost, of the remediation may
kriging to estimate mean concentrations in different be larger or smaller than expected. First, site char-
layers within a given volume. These estimates can acterization is performed and adequate data are
then be averaged to approximate the overall average  collected (as described in section 4-4). Second, the
concentration within the entire volume. This data are transformed by assigning a value of one or
assumes adequate data exist to perform the two- zero, depending on whether the value is above or
dimensional block kriging at the different depths. below, respectively, a given clean-up value or

To perform two-dimensional block kriging, adequate  other criteria. Third, the transformed data are then
site characterization data are collected (refer to used to construct a variogram as described in
section 4-4). Second, the data gathered from the Chapter 4. Fourth, this variogram is modeled as
areas of interest are used to construct a variogram, described in section 4-6. Next, this model is used
as described Chapter 4. Third, the variogram is in performing indicator kriging as described in sec-

tion 2-6. The kriging estimates essentially reflect a



probability that the concentration at the points of
estimation exceed the clean-up value or other stan-
dard. These kriging estimates can be contoured to
define areas or volumes of material that have a
certain likelihood of exceeding some cleanup value.
The contour value is essentially the probability of
exceedance. Lastly, the size of the area defined by
different probabilities of exceedance can be deter-
mined and, using a unit cost or similar approach, a
cost-versus-risk curve can be developed. This can
be used in programming money for the project, as a
basis for negotiating cleanup levels with regulators,
or to help determine if the cost and time of addi-
tional characterization work will be offset by less
risk during construction. Alternatively, rather than
transforming the data to ones and zeros, the actual
values are kriged and the kriging variances can be
used to determine prediction intervals on each esti-
mated value as described in section 2-6. In the
vicinity of the point estimate, these prediction inter-
vals can be used to define the spread of potential
values expected within a given probability. This
assumes the data are normally distributed or have
been transformed to be normally distributed.
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described in this document as appropriate. This is
particularly true during planning of large-scale site
characterization efforts or when there are risk
management or design decisions to be made that
must consider the uncertainty of site characteriza-

tion results. The same USACE elements should
also encourage the use of geostatistics, where
appropriate, by their contractors.

b. USACE elements shall make every effort

to familiarize staff members aafipelstiag

HTRW projects with the fundamentals and poten-
tial benefits of the application of geostatistics.
This letter is a good starting point for learning
about the use of geostatistics for HTRW projects.

Users are encouraged to attend appropriate
training.

c. This letter sets out procedures for the tech-
nically correct application of geostatistics which

are consistent with current practice, such as set
forth in ASTNGE22 and D-5549. The techni-

cal procedures outlined herein shall be considered
when performing USACE in-house geostatistical

analysis or reviewing such analyses done by
USACE contractors.

6. Actions Required.

a. USACE elements identified in paragraph 2
shall consider applications of geostatistics as

FOR THE COMMANDER:

2 Appendices
App A - References
App B - Notation
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Chapter 1
Introduction

1-1. General

a. ThisEngineer Technical Letter (ETL)
addresses the use of geostatistics at hazardous,
toxic, and radioactive waste (HTRW) sites. One
very fundamental aspect of perhaps all HTRW site
investigations that deal with environmental con-
tamination is the need to characterize the extent
and spatial distribution of contamination. Such a
characterization typically would include describ-
ing, using a variety of statistical or anaytical tools,
spatial trends and variability. A principal diffi-
culty in doing thisis the fact that measurements
may be few, or may be sparsely scattered over
largeregions. A question that arises naturally in
this situation is how one might interpolate in order
to make predictions (or estimates) at points where
measurements of contaminant concentration are
not available. Such interpolation will be referred
to as point, or punctual, estimation in thisETL.
Additionally, an investigator may need to deter-
mine a single representative value for an area that
is represented by several measured or estimated
values or both; thiswill bereferred to inthisETL
as block estimation. Geostatisticsis a set of sta-
tistical procedures designed to accomplish these
ends. Geostatistics may be applied to many prob-
lems, other than contamination, that occur at
HTRW stes. Even though this document addres-
ses only twodimensional applications, geostatistics
can be used in three dimensions as well. Indeed,
there are many cases in which the third dimension,
usually stratification, is desirable to address.

b. Krigingisthe principal geostatistical meth-
odology described in thisETL. For introductory
purposes kriging can be defined as a technique for
determining the optimal weighting of measure-
ments at sampled locations for obtaining predic-
tions, or estimates, at unsampled locations;
additional definition of kriging is provided through-
out this document. Kriging iswell-suited for mak-
ing point and block estimates. However, much of
the advantage of using geostatistical procedures,

11
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such as kriging, lies not just in the point and block
estimates they provide, but in the information they
provide concerning uncertainty associated with
these estimates. The uncertainty information is
usually quantified as either the standard deviation
(or variance) associated with kriging estimates and
isreferred to as kriging standard deviation (or
kriging variance) in thisETL.

c. Origina geostatistical work involved
making estimates for the areal extent and concen-
trations of economic minera deposits, in relation to
mining. Today (1996), geostatistical techniques
continue to have afunction in mining. However, a
well-devel oped methodol ogy that is capable of
interpolating a given set of measured values a dis-
crete locations into estimates for new locations or
developing an individua estimate for an area
including many locations, or both, has attracted
users from many disciplines, and thereis atrend
toward incorporating geostatistics as standard cur-
riculum for most geo-science educational pro-
grams. The use of geostatistical techniques as part
of HTRW dite investigations is becoming common
because of the almost routine need for data inter-
polation as part of these investigations.

d. Onceinvestigators have established that
their data are adequate as to quality and quantity,
geostatistics can provide powerful analytical tools
that result in quantitative characterization of areas
of specia interest within the study area or the
entire study area. These characterizations may
address spatia variation; for example, it may be
determined where values for concentrations of
contaminants in soils are relatively high or low, are
less than or greater than a specified value, or even
have a high or low probability of exceeding a
certain value.

1-2. Scope

a. Thescope of thisETL will be limited
principally to discussions and examples of two-
dimensional point and block estimations using a
geodtatistical method known as kriging. The ETL
will present the technical aspects of geostatistics
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through discussion of the assumptions behind and
the mechanics of severa types of kriging, including
ordinary kriging, which is applicable when the
mean for the variable of interest is constant over
the region of interest, and universal kriging, which
is applicable when the mean for the variable of
interest changes gradually over theregion. The
discussion aso will address a speciaized form of
kriging known as indicator kriging and the use of
information concerning uncertainty associated with
kriging estimates. The fundamental concepts of
geodtatistical kriging theory will be provided in this
ETL; however, references will be provided for
additional and more detailed information.

b. The practical aspects of kriging will be dis-
cussed through categorical examples of HTRW
siteinvestigations. The phrase “HTRW site
investigations,” will refer to planning, analysis,
and remediation implementation phases of HTRW
projects.

c. Additional topicsincluded in this ETL such
as review of applications and of some of the newer
geodtatistical techniques will be limited. The intent
will be to familiarize the reader with these topics
and not to provide how-to knowledge.

1-3. Organization

a. ThisETL isorganized into seven chapters.
Chapter 1 isintroductory and includes an overview
of the technical aspects of spatial prediction in
general and certain geostatistical concepts. Chap-
ter 2 provides a detailed discussion of assumptions
and theory behind kriging, including equations and
concepts that will be useful to investigators who
wish to gain a better understanding of the technical
aspects, or mathematics, of kriging interpolation.
As indicated, many of the concepts developed in
Chapter 2 are discussed in very genera termsin
Chapter 1, so those readers desiring only an over-
view of kriging concepts may wish to read only
Chapter 1 and bypass Chapter 2 atogether.

b. Chapter 3 provides areview of texts that
contain much more detailed information regarding

1-2

kriging theory than material included in Chapter 2.
Chapter 3 aso provides a brief generic discussion
of kriging software.

c. Chapter 4 provides a detailed step-by-step
discussion of variogram construction and demon-
strates some pitfalls and solutions to this crucia
process. Chapter 4 aso discusses methodologies
which investigators may use to evaluate their
variograms.

d. Chapter 5 provides a discussion of prac-
tical aspects of geostatistics in a presentation of
severa example kriging applications with data
from the HTRW field. The examples are intended
to illustrate a few of the many different ways
kriging can be used in HTRW site investigations
and are not presented with the same leve of detail
used in Chapter 4.

e. Chapter 6 provides additional detail on
some crucia aspects of kriging applications and
includes considerations investigators may use to
help determine if kriging is feasible for the appli-
cation they have in mind, or reviewers can deter-
mineif the application of geostatistics was

appropriate.

f.  Chapter 7 provides an introduction to other
methods for spatial modeling. This section also
includes discussion of advanced stochastic methods
such as simulation.

1-4. An Overview of the Use of
Geostatistics in Hazardous, Toxic, and
Radioactive Waste Site Investigations

a. General.

(1) HTRW dgite investigations involve complex
adminigtrative, scientific, and engineering func-
tions and are truly interdisciplinary. Scientists and
engineers, for instance, may be confronted with
administrative findings or directives, associated
with fiscal, managerial, or regulatory input, that
may either guide or constrain their work. Ina



likewise fashion, scientific findings may define the
scope of administrative effort.

(2) Scientists and engineersinvolved in
HTRW site investigations have found that they
have an implicit need for many disciplines to fulfill
the objectives of each particular investigation.
Frequently, an HTRW site investigation will
benefit from input from earth-science disciplines
such as geology, hydrogeology, and chemistry,
among others. Some HTRW site investigations are
large enough to use several individuals from each
of these disciplines, as well as many others, for the
duration of multi-year investigations. Most disci-
plines associated with HTRW site investigations
will benefit from knowledge or input from specia-
ized and/or interdisciplinary branches, the geolo-
gist, for example, will occasionally benefit from
knowledge of geophysics. Naturaly, interdisci-
plinary input also can be very helpful, especially in
geodtatistics, where earth-science disciplines rely
on assistance from statisticians.

(3) InthisETL and for its purposes, a com-
plete HTRW site investigation is described con-
cerning three relatively broad sequential activities
or phases. These phases are referred to as initial
planning, analysis, and implementation of remedia-
tion plans. Another very important HTRW site
investigation activity, monitoring, is less discrete
and isapart of al three phases. Monitoring
represents the basis for analysis, is often modified
asaresult of analysis, and may be newly imple-
mented as part of remediation.

(4) Kriging techniques can and have been used
in any of the three phases. Only afew very basic
applications of kriging techniques are described in
thisETL. Theintent of this ETL isto describe
basic concepts so that more elaborate applications
can be done based on a fundamental understanding
of the procedures involved.

(5) For examples of more elaborate applica-
tions, the reader can refer to the materia cited in
Chapter 3. However, the best applications are
developed by readers who have a clear under-
standing of the goals associated with each
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particular HTRW site investigation and also have
agood basic understanding of the fundamental
geodtatistical techniques. Asaluded to here and
elsawherein thisETL, there are many techniques
available for gridding data; kriging has an added
advantage of generating kriging standard devia-
tions that can be used as a measure of uncertainty.

b. Initial planning.

(1) Initial planning may involve severa
aspects associated with implementing or operating
amonitoring network; it also may involve recon-
naissance evaluation of an existing network. Addi-
tionally, because monitoring is present in all
phases of HTRW gite investigations, the same
opportunities for geostatistical applications asso-
ciated with network analysis that occur in the
initial planning stages may occur, perhaps often,
throughout the investigation. The information
available from kriging standard deviations can add
much to sampling or monitoring network analysis.

(2) For application of geostatistical tech-
niques, the most likely aspects of network imple-
mentation and operation to be addressed certainly
include network design, evaluation, and modifi-
cation. Geostatistics offer the investigator oppor-
tunities to:

(8) Locate areas where existing sampling or
monitoring networks may provide strong or weak
estimates.

(b) Quantify the effect of increasing or
decreasing the sampling or monitoring network
density.

(c) Evaluate the effect of removing or relocat-
ing certain monitoring locations or adding new
locations to the sampling or monitoring network.

c. Analysis.

(1) Although aspects of network design can be
quite important during analysis, the investigator is
likely to be concerned principally with using infor-
mation from monitoring networks to evaluate
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environmental conditions throughout the specified
study area. The evaluations may require either
point or block estimates. Often, design factors are
addressed in the analytical phase aswell.

(2) A common application for kriging tech-
niguesin HTRW dgite investigations is estimating
real means. More common, however, is estimating
the extent of areal contamination. Usually these
estimates involve chemicalsin air, water, and soil;
however, if sufficient information is available,
such estimates could include a wide range of
environmental factors that involve many issues
other than contaminants. Perhaps the most com-
mon examples concern geologic and hydrologic
factors, such as depth to bedrock and groundwater-
level elevations. Investigators need to redlize that
almost any set of measurements can be distributed
using kriging techniques, providing thereisa
sufficient amount and distribution of measured
information.

(3) Theinvestigator also needs to redlize that
the resultant kriging estimates can be gridded.
This gridding affords investigators opportunities to
perform mathematical or logical operations, or
both, on the kriging estimates, provided that
investigators are comfortable with kriging esti-
mates. Saturated thickness could, for example, be
calculated from kriging estimates for groundwater
elevations and base of aquifer elevations.

(4) Often, after preparing estimates for areal
properties, the investigator may appreciate the
opportunity afforded by kriging techniquesto eval-
uate the confidence associated with the estimates.
Maps of kriging standard deviations can provide
the investigator with information concerning the
confidence associated with the kriging estimates.
Although the areas of lowest confidence may be
well-known intuitively, maps of the kriging stan-
dard deviation are an important step toward quan-
tification. More often than not, even the most
experienced investigator will benefit from careful
study of maps of kriging standard deviations.

d. Implementation of remediation.

1-4

(1) One of the most common applications for
kriging techniques in the final phases of HTRW
site investigations is evaluating compliance. For
instance, a question such as “Is the mean concen-
tration of congtituent x within compliance limits?’
is ubiquitous to HTRW site investigations. Mak-
ing determinations concerning compliance is very
similar to estimating areal extent as part of the
analysis. Investigators and managers have much
to gain from the confidence information available
from kriging techniques as to the reliability of
estimates as well as in optimizing monitoring
networks.

(2) Kriging can also be very useful if man-
agers are interested in making decisions based on
the probability of certain conditions existing. If a
condition can be defined by the manager, then, pro-
viding there are adequate data, indicator kriging
can provide an estimate for the probability of
existence. A common example of thiskind of
application is making areal determinations for
probabilities that concentrations for a constituent
do or do not exceed, for example, an action level.

(3) There are many operational remediation
issues that kriging techniques may address as well.
Remedial activitiesat HTRW sites often need esti-
mates for amountsin general. For instance, there
could be a need for information regarding volumes
of contaminants to be treated, volumes of soil to be
excavated, volumes of soil to be stored, and so on.
By combining estimates for different geologic,
hydrologic, and chemical factors, estimates for
these volumes can be obtained from kriging tech-
nigues in much the same way as saturated thick-
nesses can be calculated.

1-5. An Overview of Some Technical
Aspects of Geostatistics

The purpose of this section isto provide an
overview of some of the procedures and concepts
to be treated in detail inthisETL. Some of the
technical ideas and terminology will be introduced
in very general terms, with the goal of orienting the



reader who may not be familiar with the area of
geostatistics.

a. General considerations in spatial
prediction.

(1) Theprincipal technical issue considered in
thisETL is spatial prediction or modeling values
of agpatial process; in particular it is considered
how best to make use of measurements of a vari-
able (such as pollutant concentration) at sampled
locations to make inferences (or predictions) about
that variable at unsampled locations or about
values of the variable for the region as awhole.

(2) A spatia process can be viewed as having
alarge-scale or regional component and a smaller
scale or local component; both of these compo-
nents need to be accounted for when modeling a
gpatia process. The large-scale component is
referred to as the mean field and is most often
modeled by a spatia trend which may or may not
be constant over the region. The smaller scale
component is a random fluctuation which is mathe-
matically combined with the trend to make up the
sample at apoint. The random component is
usually assumed to be zero on the average but can
be either positive or negative in individual samples.
The separation of the trend from the random com-
ponentsis problem- and scale-dependent and
requires some judgment to determine. There can
be several “solutions’ to the problem of separating
the trend and random components that may be
useful for various geostatistical purposes when
using asingle set of data.

(3) Local-scale fluctuation of the variable of
interest (e.g. water levels or contaminant concen-
trations) at a sample point, although random, can
show some association (i.e. correlation) with the
random fluctuations at nearby points. Thisis
referred to as spatial correlation. Positive spatial
correlation between measurements means that the
random components at both points tend to have the
same sign, whereas negative correlation means the
random components tend to have opposite signs.
Both the “large-scale’ trend and the positive
spatial correlation of the “local-scale€” fluctuations
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contribute to measurements taken at locations close
together being more closely related than measure-
ments taken farther apart.

(4) The most obvious way one might proceed
for spatial prediction at unsampled locationsis
simply to take an average of the sample values that
one does have and assume that this value gives a
reasonable prediction at al locations in the region
of interest. This may work adequately in some
cases, but one can aso see the pitfallsin doing
this. Using asingle value for an entire region
makes an implicit assumption of spatia homo-
geneity. It ignoresany spatial trends that might
exist in the data and it also ignores spatial conti-
nuity. If it is known that the variable of interest
does have the tendency to be spatialy correlated,
then it would make sense to use a weighted average
rather than a simple average in making a spatial
prediction, with measurements at sampled loca-
tions that are nearer to the unsampled location
being given more weight. Thisthen isthe motiva
tion for the geostatistical methods discussed in this
ETL. The method known as kriging, which isthe
principal subject to be considered here, is atech-
nique for determining in an optimal manner the
weighting of measurements at sampled locations
for obtaining predictions at unsampled locations.
These optimal weights depend on spatial trends
and correlations that may be present.

(5) There are a number of ways to go about
performing spatial prediction. The geostatistical
method of kriging covered in thisETL belongsto a
class of methods known as stochastic methods. In
these methods, it is assumed that the measure-
ments, both actual and potential, constitute asingle
realization of arandom (or stochastic) process.
One advantage of assuming the existence of such a
random process is that measures of uncertainty,
such as the variance used in kriging, can be
defined. These measures of uncertainty permit
objective assessment of the performance of a
spatial prediction technique on the basis of how
small such measures are. Once a measure of
uncertainty has been selected, the weightsto be
used in spatia prediction may be determined so as
to explicitly minimize the measure of uncertainty.
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In short, the use of stochastic techniques provides
the investigator with away of objectively quanti-
fying errors and determining weights. In practice,
spatia predictions obtained using kriging are
almost always accompanied by a measure of the
associated error. Most kriging practitioners
consider such an error evauation to be an integral
part of the analysis, and point to error anaysis as
one of the principal advantages of using kriging (or
stochastic techniquesin general) over other
procedures.

(6) Nonstochastic techniques, on the other
hand, are typically applied strictly empiricaly,
with no assumptions concerning the existence of an
underlying random process and with no theoretical
framework with which to evaluate statistically the
performance or optimality of the techniques.

When they are applied in such a manner, it is not
possible to evduate in advance whether such a
procedure would be expected to yield results that
are satisfactory. Two techniques that are com-
monly applied in a nonstochastic setting are simple
averaging, mentioned above, and trend analysis,
which is aleast- squares method for fitting a
smooth surface to the data. Even though these
techniques are usually applied nonstochasticaly, it
isstill possible to assess their performanceif a
stochastic setting is assumed. Loosely speaking
(these ideas are discussed more precisely in Chap-
ter 7), smple averaging would perform well if
there is no trend and no spatia correlation, and
trend analysis would perform well if thereisa
trend that can be modeled, but no spatia correla-
tion. Lack of correlation in the observations is one
assumption that is made in ordinary statistical
regression analysis, and in fact trend analysis, if it
is placed in a stochastic setting, is actualy one
special type of regression. The stochastic method
of kriging explicitly incorporates the spatia corre-
lations which are ignored in trend analysis. In
Chapter 7, afew other common techniques that are
usually applied in a nonstochastic setting will be
discussed briefly. Most of these techniques are
designed to incorporate the notion of spatial con-
tinuity, but the way it isincorporated may be
subjective. Kriging provides an objective means of
incorporating the presence of spatial correlation

1-6

and makes explicit the background assumptions
that are being made.

b. Important geostatistical concepts. Below
are some of the key ideasin geostatistics that will
be given detailed attention inthisETL. They are
introduced in much the same order that they are
discussed in Chapter 2, where more detail is
presented.

(1) Variograms.

(8 A central ideain geostatistics is the use of
spatial correlation to improve spatial predictions,
or interpolations. The variogram is the principal
tool used to characterize the degree of spatial
correlation present in the data and is fundamental
to kriging. The correlation between measurements
at two points is usually assumed, as described
above, to depend on the separation between the two
points. Vauesfor al possible pairings of sample
points can be examined by squaring the difference
between the values in each pair. The squared
differences are then categorized according to the
distance separating the pair. For small separa-
tions, or lags, the squared differences are usually
small and increase as the lag increases. A plot of
the squared differences per sample pair as afunc-
tion of lag isreferred to as the sample variogram.

(b) The genera behavior of the sample vari-
ogram points relates to the spatial correlation
between sample sites and can provide investigators
with qualitative information about the spatial pro-
cess, but in order to use this information in a math-
ematically rigorous manner as a basis for inter-
polation, a function with specific properties must
be fit to the sample variogram points. Thefit, as
with al curve-fitting procedures, takes the scat-
tered points and passes a smooth curve through the
points. The curve, which can be represented by a
mathematical expression or function, iscalled a
model. Several named models with characteristic
features introduced in Chapter 2 are commonly
used in geogtatistics. The resultant variogram
moddl is used to determine kriging weights for use
in interpolation.



(2) Directional variogram and anisotropy. It
is often the case that spatia correlation depends
not only on distance between points, but also on
direction. For example, measurements at pairs of
points 100 m apart with the line between them
oriented in a north-south direction may have a
different correlation than measurements at points
the same distance apart but with the line joining
them oriented in an east-west direction. The
spatial processis said to exhibit anisotropy, and
what is known as a directional variogram must be
used for the geostatistical analysis.

(3) Kriging and kriging variance.

(8 Kriging yields optimal spatial estimates at
points where no measurements exist in terms of the
values at points where one does have data. As
discussed above, placing the problem in a sto-
chastic framework permits precision-defining
optimality. Inkriging, the restriction isfirst
imposed that the predicted value a any pointisa
linear combination of the measured values; that is,
the kriging estimate is alinear predictor. Given
this restriction, the values of the coefficientsin this
linear function are chosen so as to force the pre-
dictor to be optimal.

(b) Thefirst criterion imposed is that the
estimate be unbiased, or that in an average sense
the difference between the predicted vaue and
actua valueiszero. The second optimality cri-
terion is that the prediction variance be minimized.
Thisvariance is a statistical error measure defined
to be the average squared difference between
predicted and actual values. Because the kriging
estimate minimizes this variance, it is known as the
best (minimum variance) unbiased linear predictor.
This minimization is performed agebraically and
resultsin a set of equations known as the kriging
equations, which give an explicit representation of
the optimal coefficients (weights) in terms of the
variogram. The form of these equationsis pre-
sented in Chapter 2.

() Alsogivenin Chapter 2 isan expression
for the kriging variance. This variance depends on
geometry of the data sites, with the variance at
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locations near points with measurements tending to
be smaller. One can then associate with any spa-
tial prediction a variance, which gives an indi-
cation of the uncertainty in that predicted value.
As mentioned before, this measure of uncertainty
gives kriging one of its principal advantages over
many other techniques.

(4) Trendsand universal kriging. Special
attention must be given in kriging to the question
of whether there are spatial trendsinthedata. A
trend in this case is usually any detectable ten-
dency for the measurements to change as a func-
tion of the coordinate variables but can also be a
function of other explanatory variables. For
example, aside from random fluctuations, measure-
ments of groundwater elevations may exhibit a ten-
dency to increase in a consistent manner the farther
one proceeds in a certain direction. A kriging
analysis in which there is no spatia trend is known
as ordinary kriging; when atrend does exist, uni-
versal kriging should be considered. In universal
kriging, one attempts to account for the trends
present. For example, it might be assumed that the
trend can be represented as a linear function of
coordinate variables. The form of the trend model
is then incorporated into the universal kriging
equations to obtain the optimal weights.

(5) Block kriging. What has been discussed in
the preceding paragraphs is usually known as
point, or punctual, kriging. In point kriging, the
goa isto predict the value of avariable at discrete
locations. By contrast, in block kriging the goa is
to predict the average value, over a specified
region, of avariable. Asin point kriging, the opti-
mal predictor is alinear combination of the mea-
sured data values, and degree of uncertainty is
indicated by ablock kriging variance. Block
kriging variances tend to be smaller than point
kriging variances because averages tend to be less
variable than individual values.

(6) Prediction intervals and normality.
(a) A standard kriging analysis will give two

values for any location: the optimal kriging esti-
mate and the kriging variance. The variance
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provides a measure of uncertainty for the predic-
tion. In some cases, it may be desirable to go even
further in specifying the nature of the uncertainty
than simply giving the variance. One way to pro-
ceed isto try to obtain what is known as a predic-
tion interval. Here one seeks an interval such that
thereis a certain probability, typically 95 percent,
that the actual valueliesin thisinterval.

(b) Finding such an interval often hinges on
having knowledge of the probability distribution of
the variables being sampled. Oneideal situationis
when the variable of interest, e.g., contaminant
concentration, can be assumed to have a norma
distribution. In this case, given the set of measured
values, a potential value at an unsampled location
has a normal distribution with mean given by the
kriging estimate and variance given by the kriging
variance. Itisthus, using classical statistics,
straightforward to use this normal distribution to
obtain a 95 percent prediction interval for concen-
tration at the unsampled location.

(7) Transformations. Having a prediction
interval will generally be much more informative
than simply having the kriging estimate and kriging
variance, which explains why investigators often
ask whether normality assumptions can be made
for their data. When a normality assumption
cannot be made, it is sometimes possible to find a
transformation that will make the data normal, or
nearly so. For example, atransformation that is
often tried is the logarithmic transformation. That
is, one simply takes the logarithm of al data values
(assuming they are > 0) and performs the geosta-
tistical analysis on these transformed values rather
than on the original data. Prediction intervals
obtained using transformed values can be readily
converted to corresponding intervals on untrans-
formed variables. There are, however, subtleties
that must be considered in back-transforming the
kriging estimate and the kriging variance; these are
discussed in more detail in Chapter 2.

(8) Indicator kriging.

1-8

(& Inindicator kriging, analysisis performed
using what are known as indicator variables rather
than the measured data themselves. Anindicator
variableis thus a specia kind of transform of the
measured data and can have only two possible
values: Oor 1. To obtain the indicator variables
to be analyzed, first specify athreshold value, say
¢, which may represent, for example, a contami-
nant concentration level which is of particular
importance. At each measurement location, the
indicator variable is then assigned avalue of 1 if
the measured value isless than or equal to ¢, and is
assigned avalue of O if the measured valueis
greater than c. Thiskind of transform will allow
censored data, or data reported as less than some
reporting limit, to be included in the analysisif the
reporting limit is lessthan or equal to the cutoff
value of c. After theindicator transform has been
performed, the kriging analysisis performed using
these indicator variables in the same manner dis-
cussed above; first a variogram is obtained, and
the kriging equations yield the optimal linear pre-
dictor and the kriging variance for the indicators.

(b) Whereastheindicator kriging analysisis
done using only O's and 1's, the interpolated esti-
mates are not restricted to these two values. In
most cases the estimates are between 0 and 1,
which is interpreted to be the probability that the
actua valueislessthan or equal to the threshold c.
Performing this analysis for a number of different
threshold values, ¢, can give the investigator infor-
mation about the probability distribution of con-
taminant values at alocation, which may in turn be
used to obtain prediction intervals. As discussed
above, such intervals may even be more valuable
than having only the optimal predictor and vari-
ance provided by the usua kriging anaysis, partic-
ularly if behavior of extremes may be of interest to
the investigator. The advantage of using indicator
kriging to obtain prediction intervalsisthat it is
not necessary to assume a distribution for the data,
asin the discussion of normality above.



Chapter 2
Technical Aspects of Geostatistics

2-1. General

a. Thischapter provides technical aspects or
the necessary theoretical background for under-
standing kriging applications. Emphasiswill be
placed on presentation of the basic ideas; long
formulas or derivations are kept to a minimum.
Statistical terms that are commonly used in
geodtatistical applications will be highlighted with
bold text and briefly defined as they areintro-
duced; notation used in this ETL is also tabulated
in Appendix B. The reader who wishes a more
thorough discussion of these fundamental concepts
may consult the references cited in Chapter 3.
Previous exposure to engineering statistics at the
level of Devore (1987) and Ross (1987) would be
helpful in understanding some parts of this chap-
ter. Readerswith limited statistical experience
may wish to briefly scan this chapter and refer
back to it after reading the remaining chapters.

b. In section 2-2, regionalized random vari-
ables are discussed. Regionalized random varia-
bles constitute the random process that is sampled
to obtain the observed data that are available for
analysis. Basic ideasrelated to probability distri-
butions, means, variances, and correlation are
introduced. The variogram, which isthe funda-
mental tool used in geostatistics to analyze spatial
correlation, isintroduced in section 2-3. In sec-
tion 2-4 how kriging is used to obtain the best
weights for spatial prediction is discussed, and
how the mean squared prediction error for these
predictionsis computed is aso shown. Section 2-5
deals briefly with co-kriging, which is prediction of
one variable based not only on measurements of
that variable but on measurements of other vari-
ablesaswell. Findly, section 2-6 shows how
kriging may be applied to determine not just opti-
mal spatial predictions but also probabilities
associated with various events, such as extreme
events that may be of importance in risk-based
analyses.
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2-2. Regionalized Random Variables
a. General.

(1) Suppose the extent of groundwater con-
tamination of a particular pollutant over a given
study areais being determined. To simplify the
presentation, al data are assumed to be distributed
over atwo-dimensional region. In three-
dimensiona groundwater flow systems, one could
study the depth-averaged concentration of a pol-
lutant or the concentration of the pollutant in a par-
ticular horizontal stratum of the flow system. Let
avector x=(u,v) denote an arbitrary spatial loca
tion in the study area. Unless otherwise stated, it
will be assumed throughout the ETL that u isthe
east-west coordinate and v is the north-south
coordinate (Figure 2-1). Denote by z(x) a meas-
urement at location x, such as the concentration of
apollutant. The ultimate goa of an investigator
would be to determine z(x) for al locationsin the
study area. However, without explicit knowledge
of the flow and transport field, this goal cannot be
achieved. Therefore, suppose, instead, that the
god isto estimate the values of z(x) with agiven
error tolerance. In other situations, small estima-
tion error over some parts of the study area (for
instance, near a domestic water supply) may need
to be obtained, while alowing larger estimation
errorsin other parts of the study area. The theory
of regionalized random variablesis designed to
accomplish these goals.

(2) Intheregionalized random variable theory,
the true measurement z(x) is assumed to be the
value of arandom variable Z(x). Associating a
random variable Z(x) with atrue measurement z(x)
is done for the purpose of characterizing the degree
of uncertainty in the quantity of interest at point x.
If thereis no actual measurement taken at x, then
the values taken on by Z(x) represent “ potential”
measurements at x; that is, Z(x) represents possible
values that might be expected if a measurement
weretaken at X. Because thereis uncertainty asso-
ciated with Z(x), it needs to be characterized by a
probability distribution, defined by P[Z(X) < c]
where P denotes praobability and ¢ is any constant.
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Figure 2-1. Diagrams showing A, hypothetical
study area; B, stationary covariance function; and
C, isotrophic covariance function
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This distribution is a function of ¢, and, to be com-
pletely defined, needs to be known for all values of
c. Thedistribution is used to make evaluations
such as: suppose that we have no measurement of
concentration of a certain contaminant at x, but the
distribution is known, and athreshold value of
c=8mgll isof interest. If P [Z (x) < 8] = 0.60,
then, if a measurement were made at x, thereisa
60-percent chance of obtaining a value less than or
equal to 8 mg/l. The distribution also may be used
to calculate other probabilities, such as the proba-
bility of obtaining avaue in some specified
interval.

(3) Animportant concept to keep in mind in
all geostatistical applicationsisthe support of the
regionalized random variable. The support of Z(x)
is thein situ geometric unit represented by an
individual sample. For example, in a soil contami-
nation study, sample Z(x) might represent the con-
centration of a contaminant in a vertical soil core
0.1 min diameter and 1 min length, and centered
at location x. Thus, even though Z(x) is defined at
aparticular point, it is representative of avolume
of soil. Changing the support of Z(x) will usualy
change its probability distribution. Therefore, the
observationsin a geostatistical analysis should al
have the same support. The method called point,
or punctual, kriging, described in section 2-4, is
designed to predict vaues of Z(x) with the same
support as the sample data.

(4) A concept closdly related to support is that
of estimation block, which is a geometric unit
larger than the support of a single observation, for
which a single representative value is desired. For
example, in the above soil contamination study, it
may be necessary to estimate the average concen-
tration of the contaminant in atruckload of soil
excavated from a block 6 m long, 6 m wide, and
0.3 mthick. Using a method called block kriging,
also described in section 2-4, the block average can
be predicted based on individual measurements.

(5) Although the distribution of Z(x) com-
pletely characterizes Z(x) at any particular loca-
tion, this distribution indicates nothing about the
relations among the values of Z(x) at different



locations, which is very important, because geo-
dtatistics is based on using a measurement of a
regionalized variable at one location to gain infor-
mation about values of the variable at another
location. The notion of distribution of Z(x) at a
single location is readily generalized to two or
more locations. For two locations, if we let x;, and
X, be two distinct locations, then the joint proba-
bility distribution is defined to be the probability
P[Z (xy) < ¢, Z (x,) < ¢,] for any constants ¢, and
C,. Thislatter probability means the probability
that both Z (x,) < ¢; and Z (x,) < ¢,. If the vari-
ables Z(x,) and Z(x,) are statistically independent
of one ancther, then the joint probability distri-
bution can be obtained as the product of the indi-
vidual praobability distributions,

PIZ(x)<c,Z(x)<c)
(2-1)
SP[Z(x) < e PIZ(x) = c)

However, in most applications, Z(x,) and Z(x,) will
not be statistically independent and their joint
distribution cannot be obtained from the individual
distributions. When thisjoint distribution descrip-
tion is applied to more than two locations, specifi-
cation of the full spatial distribution of Z would
require knowing the joint distribution of Z(x,), ...,
Z(x,) for any set of n gpatial locations and for any
n; however, except in very special cases, working
with the full set of distribution functions of Z(x) is
not feasible and is not done.

(6) To simplify the problem even further, vari-
ous parameters of the distributions are usually
considered rather than dealing with the entire dis-
tributions. The parameter most commonly used to
characterize a distribution is the mean, or, because
the mean in geostatistical applications depends on
the spatial variable x, the mean may be called the
spatial mean, or the drift. In statistics, the meanis
referred to as the expectation (E) of the random
variable Z(x), and the symbol m isused in this
report to denote this expectation Thus,

LY =E[Z ] (2-2)
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is used to denote the mean, or expected vaue, of
the bracketed term, in this case Z(x). Itisintui-
tively helpful to think of the expectation as an
average. Infact, if the distribution of Z(x)
assigned equal probability to a finite number of
values, then the expectation of Z(x) would indeed
be the smple average of these numbers. In geo-
statistics, however, Z(x) is usually assumed to take
on any value in a continuous range of possible
values, rather than being limited to a discrete set of
values. In this case, calculus needs to be used to
define the expectation. The following example
illustrates the difference between averages and
expectations.

b. Example 1.

(1) An experiment consists of injecting a con-
servative tracer at a particular well in a steady-
state groundwater flow system and measuring the
concentration, Z,(x), of the tracer in a neighboring
well 24 hr later. The tracer is then alowed to flush
from the system, and the experiment is repeated a
second time to obtain another concentration mea-
surement, Z,(x), at the same location. If this
processis repeated n times, n concentration mea-
surements Z,(x), Z,(x), ..., Z,(x) would be obtained,
all at location x. The average concentration level
at location x is

1

Z,(x = ,

(2,0 + Z, ®

+ o+ 2 (L))

which would change depending on n and on the
actual values obtained for Z,(x), Z,(X), ..., Z,(X).
However, in the limit as n increases, Z,, (x)
becomes closer and closer to the true mean, or
expected, concentration p(x):

Z (X) - M (X) & n increases (2-4)

Thistheoretica limit is a constant value, or popu-
lation parameter, as opposed to Z (), whichisa
random variable, or a property of the particular
sample that is taken.
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(2) Inexample 1, no assumptions were needed
concerning whether the mean changed with spatial
location, because all sampling was done at one
sampling location x. In most HTRW applications,
the mean will probably change depending on the
sampling location. In addition, usually only one
observation is available at any particular location.
Therefore some assumptions regarding the struc-
ture of p(x) must be made. For example, it is
sometimes appropriate to assume P (X) = W is
constant for al x, in which case Z(x) is said to
have astationary mean. Data which have no
underlying trend such as hydraulic conductivity in
a homogeneous aquifer, for example, might be
assumed to have a constant mean. If themean is
constant, it makes sense to estimate it with the
sample average of n observations taken at different
spatial locations Xy, Xs, -.., X,

(=

Z, =11z )+ 2x)
1 ? (2-5)

+ ...+ Z (;n)]

However, in contrast to example 1, Z, defined in
this way may not get closer to L as n getslarge.
Because of the possible spatial correlation in the
data, the size of the sampling region must be large
in relation to the correlation length in order for Z,
to accurately estimate L

(3) Inaddition to the mean of Z(x), its varia-
bility or dispersion isaso of interest, and this
variability is most commonly measured by the
(spatial) variance, defined to be the mean of
squared deviations of Z(x) from p(x) and denoted
by o*(x).

PX=E[ZEK -1 I (2-6)

The (spatial) standard deviation o(x) isthe
square root of the variance. The following exam-
pleillustrates the difference between the popula
tion variance, which has been defined above, and a
sample variance.

c. Example 2.

2-4

(1) If the scenario presented in example 1is
again used, the sample variance S,%(x) of then
measurements could be computed as follows:

1
n-1;

Sy () = Zn)l

(2-7)
(z, 0 - Z, W

This number gives a measure of dispersion of the
Z(x) values from their sasmple mean. The sample
variance depends on n and on the particular values
observed for Z,(x), Z,(x), ..., Z,(x). However, in
the limit as n increases, S,%(x) gets closer and
closer to a constant value, which is denoted by
0%(x). Inthis case, 0*(x) is apopulation param-
eter, and S,, %(x) is arandom variable.

(2) The mean and variance can both be calcu-
lated from the probability distribution of Z(x).
Again, in geostatistics, the relations among region-
alized variables at different locations are of
interest. From the joint distribution of Z(x,) and
Z(x,) the (spatial) covariance function,

Cl,x)=B[(Z() -1k 9

(2&) - 1 ()]

may be obtained. Thisfunction hasakey rolein
geostatistical analyses. It isameasure of associ-
ation between values obtained at point x, and those
obtained at point x,. If values at these two spatial
locations tend to be greater than average or less
than average at the same time, then the covariance
will be positive. However, if the values vary in the
opposite direction (that is, one tends to be larger
than average when the other is less than average,
and vice versa), the covariance will be negative.

(3) Because C(x,,X,) isan unknown population
parameter, it too must be estimated using a sta-
tistic computed from sample data. To make this
possible, it is often assumed that the covariance
function depends only on the distance between
points, which is defined as the lag h, and not on
their relative location or orientation,



C (x, x)=C (h),
(2-9)

h= U, - U+ (v — v

Under this assumption, C(h) can be estimated by
pooling al pairs of observations that are approxi-
mately h units apart and computing a sample
covariance function

¢ (h) = average {(z(x)

- 7)) - Z) - (2-10)

h - Ah <h; <h + Ah}

where h;; is the distance between x; and x; and the
average isover all pairs of points such that h; is
between h-Ah and h+Ah. Thedistance h iscalled
thelag and Ah is caled the lag tolerance. There
are more effective ways to estimate C(h) other than
using Equation 2-10; for example, see Isaaks and
Srivastava (1989). However, because the empha-
ssinthisETL ison the variogram (to be defined
below) rather than the covariance function, we will
not need to use the estimated covariance function.

(4) A covariance function is called stationary
if it does not depend on the origin of the coordinate
system, that is,

C +hx +b=C(,x) (2-11)

for any given vector, b (Figure 2-1). The covari-
ance function (Equation 2-9) is stationary because
changing the origin does not change the distance
between the points. Substituting X, = X, = x in
Equation 2-9 yields

C (x, X) = C (0) (2-12)

which, combined with the definitions in Equa-
tions 2-6 and 2-8, becomes

o? (x) = C (0) for al x (2-13)
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Therefore, when Z(x) has a stationary covariance
function, the variance of Z(x) is constant for all x.
The covariance function can then be standardized
by dividing it by the variance. The resulting
dimensionless function of h is called the spatial
correlation function,

C (h)

C (0)

p (h) = (2-14)

The correlation function is a scal e-independent
measure of linear association between values of Z
at different locations. The spatial correlation is
always between -1 and +1, with avaue of zero
indicating no linear association.

(5) In addition to being stationary, the covari-
ance function in Equation 2-9 has another import-
ant property. Itisalso isotropic, or omni-
directional, because it does not depend on the
direction between the two locations. 1n many
HTRW applications, the correlation between
values of Z at two locationsis afunction of direc-
tion aswell aslag. For example, contaminant
concentrations in a groundwater flow system might
be more highly correlated aong a transect in the
direction of flow than along a transect perpen-
dicular to the flow. In that case, the covariance
function depends on both the lag h and the angle a
between locations,

C (xl, xz) = C (h, a),

h =y, - wf v @ - v, (215

Here, a isthe angle measured counterclockwise
from the east direction (Figure 2-1). In many geo-
statistical publications or computer packages, the
angle may be defined as clockwise from the north
direction, so care should be taken in defining the
appropriate angle in any application. A covariance
function satisfying Equation 2-15 is called aniso-
tropic, or multi-directional.
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(6) To summarize, the basic modd frame-
work that will be used throughout the ETL isthe
following: the vaue of a measurement z(x) (con-
centration, porosity, hydraulic head, and so on) at
location x of atwo-dimensional region isthe value
of aregionalized random variable, Z(x), with mean
H(x) and stationary covariance function C(h,a).
Other assumptions may be added in the applica
tions sections to analyze specific data sets, but this
framework will be the basic framework from
which many of the results will be derived. In some
situations, the covariance stationarity assumption
may be relaxed, for instance, when using the linear
variogram described in the next section.

2-3. Variograms

a. Regionalized random variables differ from
classical (ordinary least-squares) regression
modelsin that the residuals, defined as the devi-
ations of the regionalized random variable from its
mean and denoted by

Z" (X)) =Z (% - ux (2-16)
are related to one another, whereas the residualsin
aregresson model are generally assumed to be
independent. Thus, in the regionalized random-
variable model, observed values of the resduas
from sampled locations contain valuable informa:
tion when predicting the value of Z(x) at unsam-
pled sites. The relationship among the residuals
can be understood by examining the variogram,
which isatool that iswidely used in geostatistics
for modeling the degree of spatial dependencein a
regionalized random variable. Although the vario-
gram is closely related to the covariance function,
there are some important differences between the
variogram and covariance function that will be
described below. The covariance function, and
related correlation function, are more commonly
used in basic statistics courses than the variogram,
so many readers may be more familiar with the
former concepts. However, the variogram is more
widely used in geodtatistics, and because of thiswe

will adopt the variogram as the primary tool for
analyzing spatial dependence in the remainder of
thisETL.

b. Aswas the case with the covariance func-
tion, it is necessary to distinguish between the
theoretical variogram, which is a population
parameter, and the sample variogram, which is an
estimator of the theoretical variogram obtained
from observed data. The theoretical variogram
of aregionalized random variable, y(x; ,X,) IS
defined as one half of the variance of the difference
between residuals at locations x; and X,:

v )= Var [2°6) 2] 1)

Because the residuals have been mean-centered, as
shown in Equation 2-16, they have a mean of zero.
Therefore, using the well-known formula for the
variance of arandom variable X

Var (X) = E (X?) - (EX)? (2-18)

it is seen that Equation 2-17 is equivaent to
— 1 * * 2 -
Y x) =S BIZ7 () - 2701 (219)

The theoretical variogram is always non-negative,
with asmall value of g indicating that the residuals
at locations x, and x, tend to be close and alarge
value of A indicating that the residuals tend to be
different. Equation 2-19 is sometimes cdled a
semi-variogram, because of the multiplication by
Y, but will bereferred to in thisETL asa
variogram.

c. Itwould beidea to know the theoretical
variogram before taking observations, but unfortu-
nately, it must be estimated using sample data. To
facilitate variogram estimation, it is usually
assumed in asimilar manner to the covariance
function that y depends only on the lag,



Y (X, x) =y (h),
(2-20)

h = \/(ul — U2+ (v, - V,)

or possibly, on the lag and angle between locations

y (X, x) = v (h a),

h= ‘/(ul “ W)+ (v - )%

Vo~V
u, —u;
(Figure 2-1). Equation 2-20 is called an isotropic

variogram and Equation 2-21 is adirectional
variogram at angle a.

(2-21)

a:atan[

d. For theisotropic case, the sample, or
empirical, variogram is obtained by averaging the
square of all computed differences between resid-
uals separated by a given lag:

7 (h) = % ave { (2* (x)
2.22
_ Z* (xz))z : ( )

h - Ah<h, <h « Ah)

where, as before, h;; is the distance between x; and
X;. For agiven h as more and more points sepa-
rated by distance h = Ah are sampled and as Ah
gets small, Q (h) should approach the theoretical
variogram. More detail on variogram estimation
will be presented in Chapter 4, including the
directional case. In thissection, it will be suffi-
cient to describe some genera properties of iso-
tropic variograms that will be referred to numerous
times in the application sectionsto follow.

e. A plot of the sample variogram versus h
often has a considerable degree of scatter (Fig-
ure 2-2), which is especially evident if the sample
szenissmal. However, the points can usually be

2-7
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fitted by a smooth curve that represents a theoret-
ical variogram selected from a suite of possible
choices. Usualy, the theoretical variogram is
monotonically increasing, signifying that the far-
ther two observations are apart, the more their
residuals tend to differ, on average, from one
another. Severa properties common to many
theoretical variograms are shown in Figure 2-2. If
the variogram either reaches or becomes asymp-
totic to a constant value as h increases, that value
iscdled thesill (Figure 2-2). The distance (vaue
of h) after which the variogram remains at or
closetothedll is caled the range. Measurements
whose |locations are farther apart than the range al
have the same degree of association. Often, a
variogram will have a discontinuity at the origin,
signifying that even measurements very close
together are not identical. Such variation in the
measurements at small scalesis called the nugget
effect. The size of the discontinuity is called the
nugget. Although the nugget effect is sometimes
confused with measurement error, thereis a subtle
difference between these two concepts that will be
explained in section 2-4. A smple monotonic
function is usually selected to approximate the
variogram. Four such functions that are often used
in practice are:

the exponential variogram (parameters. sill, s >
0; nugget, 0 < g <s; range, r > 0)

g+(s-0) [1exp[ 32)}, h>0
r (2-23)

h=0

y(h) =
0,

the spherical variogram (parameters. sill, s > 0;
nugget, 0 < g <s; range, r > 0)

S, h>r
3 (2-24)
y(h) = 1g+(s-9) 1.530.5(2) ],O<h<r>
r r
0, h=0
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——~—range

Gamma { y{h}} —»

g
} nugget

NOTE: The x's denote hypothetical sample variogram
points computed from observed data. The smooth
curve represents a theoretical variogram fitted to the
sample variogram points.

r
Lag (h) s

Figure 2-2. Diagram showing variogram and features

the Gaussian variogram (parameters. sill, s > 0;
nugget, 0 < g <s; range, r > 0)
2
1 pso
r (2-25)

g+ (sg)[lexp( 3[
y (h) =
0,

and, the linear variogram (parameters. nugget,
g >0; slope, b > 0)

g+bh, h>0
y(h) =
0, h=0

(2-26)

f.  Although there are many other models that
are used for variograms (Journel and Huijbregts
1978), these four are the most commonly used and
are shown in Figure 2-3. The exponential, spheri-
cal, and Gaussian models are similar in that they
al have asill and arange. However, they have
different shapes near zero lag (h=0) that, as will be
discussed in Chapter 4, result in significant differ-
ences in the prediction results using the three
models. The linear model is quite different from
the other three, in that it does not reach a sill, but
increases linearly without. Thisfact will have
important implications on the prediction results
using a linear variogram. Because the squared
differences between residuals tend to increase

2-8

without bound as the lag increases, aregionalized
random variable with alinear variogram will have
ever-increasing variability about its mean as the
size of the sampling region isincreased. In appli-
cations involving the linear variogram, the vario-
gram isusually truncated at a sill corresponding to
the vaue of the variogram at maximum lag h,,..

g. Before closing this section, it will be use-
ful to highlight some similarities and contrasts
between the covariance function and the vario-
gram. Although the variogram is commonly used
in ageostatistical analysis, it is sometimes easier to
gan an intuitive understanding of the methodology
using the covariance function, or equivalently, the
spatial variance and the correlation function.
When Z(x) has a stationary, isotropic covariance
function (Equation 2-9), there is a one-to-one
correspondence between the variogram and the
covariance function, namely

y () =C () - C(h (2-27)

Aslong as C(h) approaches zero as h increases (a
minor technicality that can always be assumed in
practice), then, asindicated by Equation 2-27, the
variogram reaches a sill and the sill equals C(0).
Therefore, when dealing with a covariance-
stationary regionalized random variable, the vario-
gram and the spatia covariance function contain
the same information as one another. By factoring
out C(0)=s from Equation 2-27 and using Equa-
tion 2-14, the relationship between the spatial
correlation function and the variogram can be
obtained

Y (h)
S

p(h)=1- (2-28)

From Equation 2-28, it is evident that high values
of y(h) (i.e., closeto s) signify low vaues of p(h).
Infact, p(h) = 0 whenever y(h) =s, indicating that
observations whose locations are farther apart than
the range are uncorrelated. Ash getssmall, a
nugget in y(h) isreflected in a correlation that is
lessthan 1
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EXPONENTIAL

955

Gamma (v (h))

T ke m e e —m————-

Gamma ( y(h))

Lag (h)

SPHERICAL

r=h max

Lag (h)

Figure 2-3. Theoretical variograms showing A, exponential; B, spherical; C, Gaussian; and D, linear

models

o~ 1-2ah-o0 (2-29)
S

Therefore, the larger g isinrelation to s, the less
correlated nearby observations are. The case when
g=s, called a pure nugget variogram, resultsin
p(h)=0for al h>0. In that case, neighboring
observations are uncorrelated no matter how
closely they are spaced.

h. Occasionaly, y(h) may not reach afinite
sill, asin the linear variogram Equation 2-26. In
that case, it is not possible to define a correlation
function as in Equation 2-28. The corresponding
regionalized random variable is said to be intrinsi-
cally stationary (Journel and Huijbregts 1978),
which is more genera than covariance stationarity.
The theory behind intrinsically stationary vario-
grams will not be presented in thisETL. Aslong
as a*“pseudo-range” h,,, is defined, al of the
computations described below can be generalized.

2-9

2-4. Kriging
a. General.

(1) Given aregionalized random variable Z(x)
with a known theoretical variogram, the question
is: how can the value of Z(x) be predicted at an
arbitrary location, based on measurements taken at
other locations? Suppose that Z is measured at n
specified locations. Z(x,), ..., Z(x,). For example,
Z could correspond to hydraulic conductivity and
the locations might correspond to n preexisting
welsin an aquifer. Let anew location be given by
Xo=(U,,V,) and denote the ith measurement location
by x;=(u;,v;). Suppose that, based on prior knowl-
edge of the geology, there are no prevailing trends
in hydraulic conductivity, so the mean of Z(X) is
assumed to be constant over the entire region:

M (X) = u (constant) (2-30)
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(2) Suppose the investigator wants to predict
the value of Z(x,) by using a linear predictor,
Z (Xo), which is defined as aweighted linear combi-
nation of the measured data

n

200 Y w2z

i=1

(2-31)

where w; is the weight assigned to Z(x;). To deter-
mine specific values for the weights, some criteria
need to be specified for Z (Xo) to be agood pre-
dictor of Z(x,). Thefirst criterion isthat Z (Xp) be
an unbiased predictor of Z(x,), which is expres-
sed as

E[Z(x)-2Z(x)=0 (2-32)

(3) An unbiased predictor will neither consis-
tently overpredict nor underpredict Z(x,) because
the statistical expectation of the prediction errorsis
zero. The second criterion for agood predictor is
that it have small prediction variance, defined by

Var [2 (¢) - Z (x) ] .

=E[(2 () - Z (9)f]

(4), The smaller the prediction variance, the
closer 2 (Xo) will be (on average) to the true value
Z(xo). The geodtatistical method of kriging deals
with computing the best linear unbiased pre-
dictor of Z(x,), which isthe linear unbiased pre-
dictor (Equations 2-31 and 2-32) with the smallest
possible prediction variance (Equation 2-33).

(5) Theform of the best linear unbiased pre-
dictor will depend on the mean of Z(x). For exam-
ple, if Z(x) has a constant mean (Equation 2-30)
and a pure nugget variogram [y(h)=s for al h>Q],
the best linear unbiased predictor of Z(x,) will
simply be the average of the measured data

(2-34)

N>
"
S|

Z: Z (x)

Because the variogram is the same for all h>0 and
thereisno trend in the data, there is no reason to
favor any of the measurements over any of the
other measurements. Therefore, the weights are all
the same. Ordinary kriging, which is discussed in
section 2-4b, deals with the constant-mean mode!
(assumption in Equation 2-30) in which the vari-
ogram is not a pure nugget variogram. The
weights of the best linear unbiased predictor will
reflect the information in the variogram and will
result in an improved predictor over the sample
mean. In section 2-4c, universal kriging, which is
the extension of ordinary kriging to the case of a
nonconstant mean, isdiscussed. Universal kriging
isavery powerful tool that can be used to combine
regression models and spatial prediction into one
unifying theory. Other, more specialized types of
kriging that will be discussed in this section are
indicator kriging (section 2-6¢), block kriging (sec-
tion 2-4d), and co-kriging (section 2-5).

(6) Before giving the kriging equations, one
final noteisin order. Thereisa prediction tech-
nigque in geostatistics known as simple kriging,
which deals with best linear unbiased prediction in
the case when the mean of Z(x) is fixed and known.
Simple kriging is not discussed in thisETL,
because, in most applications, the mean is not
known and has to be estimated.

b. Ordinary kriging.
(1) Generdl.

(a) Let Z(x)be aregionalized random variable
with constant mean (Equation 2-30) and isotropic
variogram (Equation 2-20). Also, assume that the
variogram reaches a sill so that the variance of
Z(x) is C(0)=s, and the correlation function is
given by Equation 2-28. Although the prediction
equations can be expressed in terms of the vario-
gram, they will be defined here in terms of the sill
(variance) and the correlation function.

(b) Consider linear unbiased predictors of the
form of Equation 2-31 with the condition in Equa-
tion 2-32 holding. The unbiased condition is

2-10



n
equivalentto p Y w. = p for any p, which holds

i=1

n

if andonly if Y w = 1. Therefore, al linear

i=1
unbiased estimators need to have weights that sum
to one. There are many sets of weights that satisfy
this condition, including the set with all the weights
equal to 1/n, asin the sample mean, Equation
2-34. However, the unique set of weights that
minimize the prediction variance (Equation 2-33)
can be shown to satisfy the following set of n+1
ordinary kriging equations (Chapter 12, Isaaks
and Srivastava (1989)):

n

A .
Z WPt = Pigs i=1,2...,n,
j:l S

(2-353)

(2-35h)

n
Y w=1
i=1

where p; = p(h;) is the correlation between obser-
vationsi and j, h;; is the distance between locations
i and j, and A is acoefficient resulting from the
congtrained optimization. Furthermore, the
resulting ordinary Kkriging variance is

B2 ) -z )]

Oi (X)o
(2-36)

S[l -y ijjo] - A

j=1

(c) The system of Equations 2-35a and 2-35b
can easily be solved for the w;'s and A, after which
the kriging variance can be obtained from Equa-
tion 2-36. Note that the ordinary kriging variance
changes depending on the prediction location X,
even though the variance of Z(x,) itself (Equa
tion 2-6) is constant for all x,.

(2) Example 1.

(a) Let the mean of Z(x) satisfy Equation 2-30,
and suppose that the residual Z*(x) (Equa-
tion 2-16) has an isotropic exponential variogram
(Equation 2-23). Consider predicting Z(x,) based
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on n=2 measurements Z(x,) and Z(x,), where the
three locations (x,, X;, and x,) are distinct. Using
Equations 2-23 and 2-28, note that the correlation
functionis

[19] exp[BD), h>0
p(h) = S r

(2-37)
1, h=0
For illustrative purposes, suppose that
g:p,nggl (2-38)

S

where p isafixed proportion. The quantity p is
sometimes referred to as a relative nugget.

(b) The ordinary kriging Equations 2-35a and
2-35b are given by

A
Wy + W, Ppp * s = Py (2-393)
A
WiPpp * W, + ? = Py (2-39b)
w, +w, =1 (2-39¢c)

These three equations have three unknowns. w;,
w,, and A; the solution is

1 1P ~ P
W= = s =—— = .
A (2-408)
1 1P ~ P
w,==- - —— =& .
2= % 21 p, (2-40b)
and
s
A _?(plo TP T P2 1) (2-41)
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The resulting kriging variance is

% (o (2-42)

_ .13 1
=3 o5 WiP19 = WoPyo ~ B (plO * Py plZ)

Although there are only three sample locations in
this example (two actua and one potential), it indi-
cates several properties of best linear unbiased pre-
diction that hold in general. For example,

(c) Effect of sill. The kriging weights
depend on s only through the relative nugget p.
However, the kriging variance is directly propor-
tiona tos. Thesdill iscalled ascaling parameter
because scaling each measurement by a constant ¢
has the effect of scaling s by ¢>. When the relative
nugget is alowed to vary so that s and g can
change independently, the effect of s is somewhat
more complicated.

(d) Effect of nugget. Increasing p hasthe
effect of drawing each of the weights closer to 1/2.
In fact, as p approaches 1, both weights will equal
1/2. Thelarger g isinrelationto s, the more
small-scale variability there isin the data and the
less important the correlation between neighboring
locations becomes. The increased small-scale
variability also causes an increase in the kriging
variance.

(e) Effect of correlations. If Z(x,) is more
highly correlated with Z(x,) than with Z(x,), then
w; will be larger than w,, indicating that the mea-
surement at the first location has more predictive
information than the measurement at the second
location. Also, correlation in the data always
decreases the kriging variance compared to the
variance with uncorrelated data.

(f) Effect of data clumping. If Z(x,) and
Z(x,) are highly correlated, as indicated by p,,
being close to 1, then the two measurements con-
tain much of the same information. Two Situations
can occur: pyo = P, 1N Which case the weights are
both equal, or p;y > Poo [P10 < Pl , 1IN Which case
w; will be much larger [smaller] than w,. In either

case, the kriging variance will increase to reflect
the redundant information in the two measure-
ments. Automatic adjustment of the kriging
weights and kriging variance to account for data
clumping is an important property of the kriging
predictor.

(3) Example 2 (Nugget effect versus measure-
ment error).

(& Inexamplel, dl three locations x,, X;, and
X,, were assumed to be distinct. When a prediction
location happens to coincide with a measurement
location, there is an important distinction that
needs to be made between a true nugget effect and
ameasurement error. Suppose that in example 1,
X and x, arethe same. If thereisonly small-scale
variability, but no measurement error, then
repeated measurements at the same location should
beidentical, that is, p,o = 1. In this casg, the krig-
ing equationsresultinw,; =1, w,=0,and A =0
and in akriging variance of zero. That is, Z(x,) is
a perfect predictor of Z(x,). This property, called
exact interpolation, is a property of kriging when
the data are assumed to contain no measurement
errors. However, suppose instead that the nugget
isinterpreted as measurement error rather than
small-scale variability. Inthat case, repeated
measurements at the same location would not be
perfectly correlated, but rather, p,, = 1-9/s.

(b) Subgtituting this correlation into the krig-
ing equations and solving the equations resultsin a
predictor that does not exactly interpolate the data,
but instead smooths the measured data to account
for the measurement error. InthisETL, prediction
locations are assumed not to coincide with mea-
surement locations, in which case no distinction
needs to be made between nugget and measurement
error.

c. Universal kriging.

(1) Universal kriging is an extension of ordi-
nary kriging, that, due to the fact that environ-
mental data often contain drift, can be important in
HTRW gte investigations. Universal kriging
addresses the case of a nonconstant mean p(x).



Generally, the mean is assumed to have a func-
tional dependence on spatial location of the form

p

Hu V=Y Bf Uy

j=1

(2-43)

where the f,(u,v)'s are known deterministic func-
tions of x=(u,v) (that is, these functions serve as
independent variables) and the ;’s are regression
coefficients to be estimated from the data. For
example, suppose Z(x) is hydraulic head in an
aquifer. If the flow isin a steady dtate, it might be
reasonable to assume, in a given case, that the
mean of Z(x) has a unidirectional groundwater
gradient that is given by

U V) =p +Bu (2-44)
In this example, there are two independent
variables:
f,uv=1
(2-45)
f,(uv)=u

and two regression coefficients (B, and 3,). The
mean can include other independent variables
besides smple agebraic functions of u and v. For
example, if the aquifer is not of uniform thickness,
an independent variable that involves the aquifer
thickness at location (u,v) could be included.

(2) Theform assumed for the mean in Equa-
tion 2-43 is aso generally used in standard linear
regression analysis. Inregression, ordinary least-
squaresis generally used to solve for the coeffi-
cients; when thisis done, it is assumed that the
residuals are independent and identically distribu-
ted. Universal kriging is an extension of ordinary
least-squares regression that allows for spatially
correlated residuals. Assuming that Z(x) isa
regionalized random variable with a mean asin
Equation 2-43 and residual correlation function as
in Equation 2-28, the best linear unbiased predictor
(Equation 2-10) can be obtained from the follow-
ing n+p equations, called the universal kriging
equations (Journel and Huijbregts 1978):

2-13
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Wp, + = Af ()

,-;1 s kgl K (2-463)
= po i=1, 2, .

n

by w; ()—(J)
=1 (2-46h)
=f (). k=12 .. p

where, in contrast to the ordinary kriging equa-
tions (2-35a and b), there are now p coefficients
A1, ...y A, resulting from the unbiased condition on
the predictor. The first term in the mean (Equa-
tion 2-43) will usualy be a constant, or intercept,
for which f,(x) = 1. Therefore, the universal krig-
ing model includes ordinary kriging as a specia
case. The universal kriging variance is given by

n

> Wipio]

i=1

o, (%) = s[l -
(2-47)
p

- Y A %)

k=1

These equations can be easily solved to obtain
universal kriging predictors and kriging variances
for any desired location. The estimated trend
surface does not actually need to be computed to
obtain the universal kriging predictor. If a particu-
lar application needs an estimate of the trend sur-
face, then generalized least-squares regression can
be used to estimate the coefficients (;'s) in the
regression equation.

d. Block kriging.

(1) Up to this point, the problem of predicting
the value of aregionalized random variable at a
given location in the region over which the variable
is defined has been considered. Implicit in this
analysis is the assumption that the support of the
variable being predicted is defined in exactly the
same way as the variables that make up the mea-
surements. However, there may be applications
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where it is hecessary to estimate the average value
of Z over an estimation block of much larger area
than is represented by an individual sample. For
example, an estimate of the average concentration
of acontaminant over an entire aquifer based on
point measurements at various locations might be
needed. In other applications, an estimate of the
average concentration of soil contaminant in daily
excavation volumes that are much larger than the
volume of an individua sample may be needed.
Let Z; be the average value of Z(x) over a particu-
lar block B,

Xm: Z (x) (2-48)

3|H

where x;, i=1,...,m, denotes m prediction locations
in block B. The object isto predict this average
rather than the regionalized variable at asingle
location. In many applications, the locations x;
might correspond to nodes of aregular grid or
finite- element nodesin a groundwater model .
Results of the block kriging are dependent on m
and on the placement of the prediction locations.
Selecting alarge number of locationsin block B,
where each location has approximately the same
representative area, is the best approach (Chap-
ter 13, Isaaks and Srivastava (1989).

(2) The objective of block kriging isto obtain
the best linear unbiased predictor of Z; and an
estimate of the block kriging variance based on the
measurements. The modd for Z(x) can be the
congtant-mean model (Equation 2-30) assumed for
ordinary kriging or the more general linear regres-
sion mode (Equation 2-43) assumed for universal
kriging. In either case, the predicted value of Z,
coincides with the average of the predicted values
of the individual measurements in the block; that is

(2-49)

=1 Yy ﬁ(xo)
mi=1

In this equation, the individua predicted values are
obtained from either the ordinary or universal krig-
ing equations. However, computation of the block

kriging variance is not as smple, because the
individua kriging estimates are not independent of
one another. There are smple modifications to the
kriging equations discussed in sections 2-4b and
2-4c that can be used to directly compute the krig-
ing estimate of Z,, along with its kriging variance
(Chapter 13, Isaaks and Srivastava (1989)). The
equations are not presented inthisETL. The com-
puter packages described in the next section can be
used to compute block kriging estimates. In gen-
erd, kriged values of block averages are less
variable than kriged values at single locations.
Consequently, the blocked kriging variance tends
to be smaller than the kriging variance at asingle
location.

2-5. Co-kriging

a. Kiriging asdiscussed so far provides away
of predicting values of aregionalized variable Z(x)
at alocation x, based on measurements of the same
variable a locations x,, X5, ..., X,. 1N some situa-
tions, however, there will be available measure-
ments not only of Z(x), but also of one or more
other variables that can be used to improve predic-
tions of Z(x,). The variable Z(x) will be called the
primary variable, because it is the one to be pre-
dicted, and the other variables will be called
secondary variables. Co-kriging isthe technique
that allows the use of the information contained in
secondary variables in the prediction of a primary
variable. Asan example, supposethat Z(x) isa
regionalized variable representing the hexavalent
chromium concentration, arelatively difficult
determination, and that hexavaent chromium con-
centration needs to be predicted at alocation x,
based on measurements of hexavalent chromium at
other locations, but there are also measurements of
a second relatively easily determined contaminant,
for example lead, that tend to be correlated with
hexavalent chromium concentration and these data
areto be used aswell. Denote the second variable
lead by aregionalized variable W(x), and assume
that measurements have been made on W at m
locations x'; X'y, ..., X',. The co-kriging predictor
of Z(x), isthen

2-14



(2-50)

Thisis a straightforward extension of the kriging
predictor in Equation 2-31. Analogous to kriging,
co-kriging produces the weights w; and w'; so that
the resulting predictor is the best linear unbiased
predictor. Also, as with kriging, co-kriging
requires modeling of the variogram for Z, but
co-kriging presents the investigator with the addi-
tional necessity of modeling the variogram of W
and the cross variogram for Z and W. The opti-
mal weights are then expressed in terms of all
these variogram properties. More than one sec-
ondary variable may be included in the co-kriging
predictor, and theory has been developed for
co-kriging in the presence of drift (universal
co-kriging) and block co-kriging. Details are not
included in this ETL, but the interested reader may
refer to Isaaks and Srivastava (1989) and Deutsch
and Journel (1992) for more discussion and cita-
tion of other references.

b. One stuation in which co-kriging might be
useful is when the primary variable is undersam-
pled, so any additional information, such as that
given by secondary variables, would be helpful.
However, athough co-kriging can be a useful tool,
joint modeling of several variablestendsto be
demanding in terms of data and computational
requirements. Thus, undersampling of the primary
variable may present problems for co-kriging as
well asfor one-variable kriging. Also, unlessthe
primary variable of interest is highly correlated
with the secondary variable(s), the weights
assigned to the secondary variable(s) are often
small, with the result that the effort needed to
include the additional variable(s) may not be
worthwhile. For these reasons, co-kriging tends
not to be used extensively in practice.

c. Although co-kriging is similar to universal
kriging, in that both techniques use extra variables
to help predict Z(x), there is an important
distinction between the two techniques. In
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universal kriging, the independent variablesin
Equation 2-43 need to be known with certainty at
the prediction location x,. For example, aquifer
thickness might be an independent variable in
predicting aguifer head if it can easily be
determined at any location. However, aquifer
thickness may need to be considered a secondary
variable in a co-kriging procedureif it is only
known at afew selected points in the aquifer.

2-6. Using Kriging to Assess Risk
a. General.

(1) Thekriging predictor of Z(x,) has certain
desirable properties with respect to how closeit is
to the actual value of Z(x,), it isunbiased and has
smallest variance among dl linear predictors. On
the average, or in an expected sense, the predicted
value will be near the actual value. When possi-
ble, however, the investigator would like to go fur-
ther in specifying the relationship between the
predicted and observed values. Idedly, the investi-
gator would like to make probability statements.
For example, if Z(x,) is concentration of a contam-
inant, the investigator might like to be 95 percent
certain that the true concentration is within
0.05 ug/t of the predicted concentration. In other
situations, the probability that the actual concen-
tration exceeds a given target value might need to
be estimated. Knowledge of the entire distribution
function of Z(x), as opposed to knowledge of only
its mean and variogram, can be used for risk-
gualified inferences in Situations when extremes
might be of more interest than averages.

(2) Introduction of the concept of acondi-
tional probability distribution function of the
regionalized variable Z(x) is appropriate at this
point. This concept will also be used in Chapter 7
when conditional smulation isdiscussed. The
conditional probability distribution function has a
definition much like that of the probability distri-
bution function in section 2-2, except the proba-
bility that Z(x) < c is computed “conditiona on,”
or “given,” information at other spatial locations.
Theinterest in geostatistics is to make predictions
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at alocation x, using information at measurement
locations x,, X,, ..., X, SO, in terms of conditional
distributions, interest focuseson P [Z (X)) < C | Z
(%)), Z (%), ..., Z(x,) ]. The vertical bar denotes the
conditioning and isread “given.” This conditional
probability distribution needs to be determined to
make probability statements about the regionalized
variable at location x,. Also, conditional mean
and conditional variance can be defined in the
present context in the same way that mean and
variance for distribution functions were defined in
section 2-2.

(3) Section 2-6b contains methods for using
kriging output to obtain prediction intervals or
guantiles when the regionalized random variableis
either normally distributed or can be transformed
to anear-normal distribution. Section 2-6¢ dis-
cusses indicator kriging, which is a nonparametric
method for obtaining quantiles when data cannot
be transformed adequately to a normal distribution.

b. Normal distributions and transformations.

(1) For prediction at alocatl 0N X, akriging
analysis produces the predictor i (Xo) and the asso-
ciated kriging variance oi (x ). If moreinforma
tive probability assessments areto be made, the
ideal situation iswhen Z(x) can be assumed to be a
Gaussian, or normal, process, which means that
[Z(x)),-.., Z(X;)] has ajoint normal probability dis-
tribution for any set of n locations and any value
of n. Inthiscase, the conditiona probability dis-
tribution of Z(x,) given the n observationsis a nor-
mal distribution with conditional mean equal to the
kriging predictor i (X,) and condltlonal variance
equa to the kriging variance ok (x ). Thisnorma
distribution can be used to obtain a prediction
interval for Z(x,) (conditional on the measured
data). For example, from atable of the normal
distribution, a value of 1.96 corresponding to a
0.95 (two-sided) probahility can be obtained.

Then the assertion that there is a 95-percent chance
that Z(x,) will be in the 95-percent prediction inter-
va [Z(x) 196 o (x) Z(x)+196 o (x)]
can be made KnOWI ng thls mterval is much more
useful than simply knowing the kriging predictor
and variance.
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(2) Toillustrate quantile estimation, suppose
that contaminant concentrations are being studied
and the concentration that has only a 1-percent
chance of being exceeded at location x, needsto be
determined. The appropriate (one-sided) value
from anormal table is 2.33, so the desired estimate
isZ (xo) + 2.330, (xo).

(3) Evenif Z(x) isnot Gaussian, it is often
possible to find a transformation, Y(x)=T(Z(x)),
such that Y(x) is approximately Gaussian. When a
transformation is made, the kriging analysisis per-
formed using the transformed data Y(x), and the
inverse transformation may be applied to obtain
prediction intervals for the original data. For
example, the most common transformation is the
(natural) logarithmic transformation, in which
Y(X)=1n[Z(x)]. A 95-percent prediction interval
for Z(x) isthen {exp [Y(xo) 1.96 o,(x)], exp [Y
(Xo) + 1.96 0,(xy)]}. Aslong asthe transformation
is aone-to-one function such as alogarithmic
transform, prediction intervals for the origina data
can be obtained by simply back-transforming pre-
diction intervals for the transformed data.

(4) Although it isasimple matter to obtain
prediction intervals and probabilities using smple
back-transformation, it is more difficult to obtain a
predictor of the untransformed data that is both
unbiased and optimal in some sense. For example,
in the case of alogarithmic transformation, a
kriging analysis using the transformed data yields
apredictor Y (x,), which isthe best linear unbi-
ased predictor of Y (x,). However, the back-
transformed value Z (x,) = exp [Y (x,)] does not
possess these same optimality properties as a pre-
dictor of Yx,. The methodology known as log-
normal kriging, and more generally trans- normal
kriging, has been developed to obtain predictorsin
this setting (Journel and Huijbregts 1978), but
because of the complexity involved in these pro-
cedures, they are not usually used by practitioners.
If apredicted vaue corresponding to Z(x,) needs to
be obtained for purposes of contour plotting, the
kriging predictionsY (x,) may be back-transformed
and plotted, as long as the investigator realizes that
such values do not have the usua kriging opti-
mality properties.



c. Indicator kriging.

(1) There may be situations when a transfor-
mation that makes Z(x) approximately normal
cannot be easily determined. In such situations,
indicator kriging can be used to make inferences
about the probability distribution of Z(x). Because
no distributional assumptions are made, this tech-
nique is known as a nonparametric statistical
procedure. An example of indicator kriging is
included in Chapter 5, and a paper by Journel
(1988) is agood reference for additional informa-
tion about indicator kriging.

(2) To perform indicator kriging, a special
transformation, known as an indicator transforma-
tion, is applied to Z(x):

(2-51)

I (x,0) =

1, Z(x) < c
0, Zx) > ¢

If, asin the usual kriging scenario, the data set at
hand consists of measurements of the regionalized
variable Z(x) at n locations, ¢ needsto be fixed
first, and then the indicator transformation is
applied by replacing values that are less than or
equal to ¢ with 1 and values that are greater than ¢
with 0. The variogram and kriging analysisis then
performed using these 0’'s and 1’ s rather than the
raw data.

(3) Kriging predictors using the indicator data
will be equal to their observed valuesof O or 1 at
the measurement locations x;, i=1,...,n. However,
at locations different from the measurement loca-
tions, predictions may be betweenOand 1. In
interpreting these values, the power of indicator
kriging becomes apparent. A predicted value at x,
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is an estimate of the conditional probability distri-
bution P [Z (>=<0) <clZ ()=(1) V4 (>=<2), vy Z (>=<n)] .
This analysis may be performed for a range of
values of ¢, and by doing this the entire distribution
function can be estimated. This estimate of the
distribution function can be used in the same man-
ner discussed above to obtain prediction intervals
or estimates of quantiles. For example, to estimate
the value that has a 1-percent chance of being
exceeded at location x,, the value of ¢ for which the
kriged indicator prediction is 0.99 at that |ocation
iS determined.

(4) One advantage of indicator kriging is that
the indicator variogram is robust with respect to
extreme outliers in the data because no matter how
large (or small) Z(x) is, theindicator variableis
either O or 1. Indicator variables may aso be used
in the context of block kriging. For example, a
spatial average of 1(x,c) over ablock B equalsthe
fraction of block B for which Z(x) islessthan c.
Another advantage of indicator kriging isthat it
can be used when some data are censored.

(5) Degpite the relative ease of implementa-
tion, there are several drawbacks to indicator
kriging, and investigators may wish to use this
technique only when other methods, such as
normality transformations, produce unacceptable
results. For example, the kriged values of 1(x,c)
may be lessthan O or larger than 1. Also, the
kriged prediction for 1(x,c,) may be larger than the
kriged prediction for I(x,c,) even if ¢,<c,, whichis
not compatible with avalid probability distribu-
tion. There are several more advanced techniques
for dealing with these problems (Chapter 18,
Isaaks and Srivastava (1989); however, they are
beyond the scope of thisETL.



Chapter 3
Geostatistical Resources and Tools

Since the mid-1970's, amyriad of texts and arti-
cles have been published that are either totally
dedicated to geostatistical methods or discuss
geodtatisticsin detail. Numerous computer pro-
grams and software packages on geostatistics and
kriging accompany many of these texts. Although
only afew of these resources will be briefly
described in this ETL, their lists of references can
provide the interested reader a path to other geo-
statistical topics or software not specifically
covered in the resources.

3-1. Texts on Geostatistics

a. The geostatistical texts presented in this
section can be classified into two broad categories:
instructional texts or reference texts. For one who
is delving into geostatistics for the first time,
Clark’s (1979) book is a starting point. Simple
explanations of the basic kriging techniques are
applied to an example data set. A more advanced
treatment of the kriging techniques is described by
Isaaks and Srivastava (1989). This textbook pre-
sents a detailed discussion of many of the back-
ground statistical tools and concepts needed in
geodtatistical applications, including histograms
and distributions (univariate and bivariate),
sampling, correlation, and spatial continuity. The
text also discusses how to treat the subtleties of
kriging using three data sets as examples. Aswell
as being ingtructional, the book also can be used as
areference.

b. Textsby Cressie (1991) and Journel and
Huijbregts (1978) describe the tools of geostatis-
tics, but aso include a comprehensive theoretical
background on the techniques. Cressie’s (1991)
text is atreatment of spatial processesin generd
and reviews awide range of statistical techniques
in the analysis and stochastic modeling of spatia
data. Thereisafour-chapter section on geoste-
tistics, with a complete discussion of variogram
estimation, kriging (including universal kriging),
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intrinsic random functions, and comparisons of
kriging to other spatial prediction techniques. The
text iswritten from a statistician’ s point of view
and is, in places, written at afairly high level
mathematically. It nevertheless contains numerous
examples and illustrations using real-world data.
Journel and Huijbregts (1978) maintain a mining-
geological perspective. Two other texts written by
dtatisticians that present general treatments of spa-
tial processes, but that lack detailed discussions of
kriging, are Cliff and Ord (1981) and Ripley
(1981).

c. David's(1977) text was thefirst extensive
discussion of geostatistics and kriging in mining
applications, and the discussion is presented from a
practitioner’ s viewpoint. Itsvaue as reference
material derives from the many specific mining
applications and results. A broad statistics text
with a bent toward geological applications (Davis
(1986), serves as areference for standard statisti-
cal procedures needed in geological applications of
geodtatistics. A book by Bras and Rodriguez-
Itrube (1985) that discusses a range of techniques
for stochastic modeling in the field of hydrology
includes a chapter on applications of kriging.
Thereisafairly complete mathematical develop-
ment of kriging with details of an application to
predict mean areal precipitation. In a paper pre-
pared for the U.S. Environmental Protection
Agency, Journel (1993) discusses geostatistics as it
relates to environmental science. Finally, Olea
(1991) presents a useful glossary of geostatistical
terms.

3-2. Useful Journals

The journal Mathematical Geology by the Inter-
national Association for Mathematical Geologists
reports new developmentsin the theory and appli-
cation of kriging. Although many of the articles
present new applications of kriging tools, many
also are dedicated to the derivation of statistical
properties of the variogram, kriging estimation,
and cross-validation results. Journals such as
Water Resources Research, published by the
American Geophysical Union, and Groundwater,
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published by the Association of Groundwater
Scientists and Engineers, contain articles describ-
ing specia applications of kriging techniques in the
environmental arena. Water Resources Research
tends to contain articles that are highly theoretical.
Other journals that may contain information
addressing geostatistics are the Journal of Envi-
ronmental Engineering, published by the Ameri-
can Society of Civil Engineers; Stochastic
Hydrology and Hydraulics, published by Springer
International, and the North American Council on
Geostatistics, published by the Colorado School of
Mines.

3-3. Software

a. The geodtatistics software described in this
section is limited to afew readily available public
domain packages that are executable at least on the
DOS and sometimes on the UNIX platforms.
There are several commercial packages that are
being marketed, but these will not be reviewed in
thisETL. It isbeyond the scope of thisETL to
acquire and evaluate commercial packages; how-
ever, amatrix-like table (Table 3-1) has been
included. The table addresses each of the software
packages described in this ETL and also may serve
as areference guide to other software packages.

b. Some of the earliest interactive kriging
software offered as a package was devel oped by
Grundy and Miesch (1987). Overal, this general
statistics package (STATPAC) contains a series of
programs that can handle two-dimensional kriging,
including universal kriging. The package has
capabilities for data transformations, variogram
analyses, cross-validation, and univariate statistics
(Table 3-1). Graphicsin the package are limited
to simple line-printer plots of the sample vario-
gram points and data maps. The menu-driven
package includes atutoria using all of the kriging
routines. The package is distributed with not all,
but most source codes and, therefore, can be
modified by the user if desired. All two-
dimensiona kriging routines can be executed from
the command line, which provides users with the
opportunity for batch processing.
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c. Thegeodtatistical environmental assess-
ment software know as GEO-EAS (Englund and
Sparks 1991) also is an interactive, menu-driven
kriging software package for performing two-
dimensional kriging. It has no direct provisions for
universal kriging (Table 3-1). GEO-EAS does
have an advantage over STATPAC in its enhanced
graphics capabilities, which are useful in the inter-
active fitting of theoretical variograms to sample
variogram points. In addition, in the computation
of the sample variogram points, GEO-EAS alows
for variable bin sizes, the use of which will be fur-
ther discussed in Chapter 4.

d. STATPAC and GEO-EAS were originally
devel oped for the personal computer. Since then,
versons of GEO-EAS have been developed for
some types of work stations. The kriging routines
in STATPAC have not been adapted to work
stations.

e. A third software package, the geostatistical
software library known as GSLIB (Deutsch and
Journel 1992), is a suite of programs developed
over the years at Stanford University, Stanford,
CA. Itispresented as a collection of routines that
are machine-independent (Table 3-1) and are
intended to be used as a modular concept. The
package is distributed as a suite of FORTRAN
source codes that need to be compiled. Use of
GSLIB requires ardatively high level of familiar-
ity with geostatistics for its efficient use. Asinthe
previous two software packages, GSLIB handles
variogram analysis and kriging techniques
(Table 3-1). Two of its primary advantages over
the other two packages are its simulation tech-
niques and ability to analyze three-dimensional
data sets. Such techniques are useful especidly in
estimating potential extreme outcomes in a geosta
tistical anaysis.

f.  The Department of Defense Groundwater
Modeing System (GMYS) is a fourth software
package that has kriging capabilities. GMSisa
windows-based integrated modeling environment
for site characterization, groundwater flow and
transport modeling, and visualization of results.
The GSLIB software has been implemented within



GMS to facilitate two- and three-dimensional
kriging and interactive variogram modeling. GMS
also provides comprehensive visualization tech-
niques as well as other interpolation techniques
that can be used as alternatives to kriging. The
GMS system was devel oped for the Department of
Defense by the Brigham Y oung University Engi-
neering Computer Graphics Laboratory. GMS
may be obtained from the U.S. Army Groundwater
Modeling Technical Support Center, (U.S. Army
Engineer Waterways Experiment Station, Vicks-
burg MS 39180).
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g. A fina note concerning geostatistical soft-
ware and literature is that there can be differences
in jargon or notation. These differences may
cause someinitial confusion if users or readers do
not pay careful attention to the jargon or notation.
For example, some authors may wish to use the
term “ semi-variogram” rather than “variogram”;
others may express random variables as other than
Z as hasbeen donein thisETL, and it is common
for different software to have different references
for directional angles when discussing anisotropy.
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Table 3-1
Geostatistical Software Characteristics
Characteristic STATPAC GEO-EAS GSLIB GMS2.0
Operating system DOS DOX/UNIX Independent (requires WINDOWS 95 UNIX
FORTRAN compiler)
Menu-driven Yes Yes No Yes
Batch processing Yes No Yes Yes
User modifications Yes, source code No Yes, source code No
provided provided
Data-set constraints Yes, modifications Yes Yes, modification Yes
possible via possible via
source code source code
ASCII output Yes Yes Yes Yes
Univariate statisitcs Yes Yes Yes Yes
Additional exploratory Yes Yes Yes Yes
capabilities
Graphical support for Yes Yes Yes Yes
analysis
Transformation Yes Yes Yes Yes
Back-transformation No No Yes Yes
Variogram construction  Yes Yes Yes Yes
Variogram analysis Yes Yes Yes Yes
Variogram graphics Yes Yes Yes Yes
Cross-validation Yes Yes Yes Yes
operations
Ordinary kriging Yes Yes Yes Yes
Universal kriging Yes No Yes Yes
Block kriging Yes Yes Yes Yes
Indicator kriging Yes Yes Yes No
Conditional simulation Perhaps with batch No Yes No
processing
Three-dimensional Perhaps with batch No Yes Yes
kriging processing
Mapping Yes Yes Yes Yes
Contouring Yes Yes Yes Yes
Gray-scale maps Yes Yes Yes Yes
Line printer Yes No Yes Yes
High-resolution screen No Yes Yes via postscript Yes
High-resolution printer No Yes Yes Yes
Postscript No No Yes Yes
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Chapter 4
Practical Aspects of Variogram
Construction and Interpretation

4-1. General

a. Chapter 2 presented the mathematical
foundation for geostatistics and the kriging tech-
nigque. One theme that pervades the technique is
the importance of the theoretical variogram. The
theoretical variogram, or what we will often refer
to smply asthe variogram, is a mathematical
function or model which isfitted to sample-
variogram points obtained from data. Permissible
models, which include those given in Chapter 2,
belong to afamily of smooth curves having par-
ticular mathematical properties and are each speci-
fied by a set of parameters. Chapter 4 will
describe a sequence of stages for estimating and
investigating sample variogram points and a cali-
bration procedure for specifying the parameters of
the variogram model eventually fitted to the sample
points. Although the cdlibration procedureis
largely an objective means for evaluating theoreti-
cal variograms, the process of obtaining sample
variogram points and finalizing a theoretical vari-
ogram remains an art as much asascience. An
understanding of the materia presented in Chap-
ter 2 aswell as professional judgment achieved
through experience in geostatistical studiesis
important in effectively using the guidelines pre-
sented in this section.
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b. An accurate estimate of avariogram is
needed from a kriging perspective because the cor-
relation matrix used to obtain the kriging weights
is constructed from the variogram values. Even
more directly, the variogram affects the computa-
tion of the kriging variance (Equations 2-36 and
2-47) through the product of the kriging weights
and variogram values. An accurate variogram aso
has utility outside the strict context of kriging. For
example, in augmenting a spatial network with new
data collection sites, the range parameter of the
variogram could be used as the minimum distance
of separation between the new sites and between
new and existing sites to maximize overall
additional regiona information. In another non-
kriging-specific application, the variogram is used
in dispersion variance computations in which the
variance of areal or block values is estimated from
the variance of point-data values (e.g., Isaaks and
Srivastava (1989), p. 480).

c. The stages of variogram construction are
described using an example data set of ground-
water elevations measured near Saratoga, WY
(Lenfest 1986), that are summarized in Table 4-1
and whose relative |locations are shown in
Figure 4-1.

d. The sequence of stepsin computing sample
variogram points depends on the stationarity prop-
erties of the regional variable represented by the
data. If the mean of the regional variableisthe
same for al locations, then it is said to be spatially

Table 4-1
Univariate Statistics for Example Data Sets*

Standard

Example Number of Minimum Maximum Mean Median Deviation ~ Skewness
Identifier Measurements Transformation (Base units) (Base units) (Base units) (Base units) (Base units)(Dimensionless)
Saratoga Drift 2,016.6 2,254.3 2,119.25 2,104.35 56.79 0.45

Water level A 83 Drift 25.6 65.68 42.30 38.54 10.13 1.03

Water level B 74 Drift 25.6 65.68 42.85 38.71 10.59 0.87

Bedrock A 108 None 22.64 80.48 44.42 42.82 10.76 0.89

Bedrock B 89 None 2453 69.22 43.67 43.17 8.58 0.26

Water quality A 66 Natural log 2.08 8.01 5.19 5.59 1.75 -0.42

*Base unit for Saratoga, water levels, A and B, and Bedrock A and B is feet; base unit for water quality A is log concentration,
concentration in micrograms per liter.
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Figure 4-1. Measured water levels from Saratoga
data

stationary; if the mean changes with location, then
itis spatially nonstationary. Generally, if the data
have a stationary spatial mean, the discussions in
sections 4-3 and 4-7, which address nonstation-
arity and additional trend considerations, can be
omitted. If the spatial mean is not stationary, as
for this example data set, then sections 4-3 and 4-7
become important, and the sequence of stages for
obtaining a variogram becomes an iterative pro-
cedure. All variogram and kriging computations
for the Saratoga groundwater levels example were

4-2

performed by the interactive kriging software
described in Grundy and Miesch (1987).

4-2. General Computation of Empirical
Variogram

a. Asdescribed in section 2-3, the variogram
v (h) characterizes the spatia continuity of a
regional variable for pairs of locations as a func-
tion of distance or lag h between the locations.
This variogram is sometimes called the theoretical
variogram because it is assigned a continuous
functional form that expresses the spatial correla-
tion for any lag in the region of analysis. The
function is estimated by fitting one of the equations
given in section 2-3 to empirical or sample vario-
gram pointsy(h) using data whose locations con-
tribute only a finite number of lags. Although y(h)
characterizes the spatial correlation of the data, it
is computed from residuals of the data off the spa-
tial mean. Therefore, without prior knowledge of
nonstationarity in the underlying spatial process,
the first step in computing the sample variogram is
to identify existing nonstationarity indicated for the
spatial mean.

b. The approximation to Equation 2-19

. . . 2
begins by computing squared differences D;’; from
the data values z(x;), z(x,), ...z(x,) collected at loca-
tions X;, X, ... X,

Di’Zj = [z (x) - 2 (xj)]2 (4-1)

If the spatial mean is stationary, then the squared
differences of the data are equivaent to the
squared differences of the residuas, and sample
variogram computations can be continued using
the data themselves. If the spatial mean is strongly
nonstationary, the plot of Equation 4-1 versus the
distance between associated points may indicate a
trend or drift that would need to be removed before
further variogram computations could be made.
Drift would have to be considered in HTRW
studies, such as determining contaminant concen-
trations areally dispersed from localized sources or



determining groundwater elevations following a
local or regional gradient. I1n such studies sample
variogram computations need to be made using
residuals obtained by subtracting the estimated
drift value at each location from the value of the
datum at the location.

c. Thedatain Equation 4-1 are differenced
without considering the reI ative direction between
the locations; that i |s, D isisotropically com-
puted. A plot of D versus h;; for al i,j (i>}),
where h;; = | X - x |, produceﬁ acloud of
points Whose propertl és govern the behavior of .
The central tendency of the cloud would generally
increase with h. A substantial increase in the
centra tendency that persists for large h can indi-
cate a nonstationary spatial mean. The cloud com-
puted for the Saratoga data, with groundwater
levels (z) in meters and distance (h) in kilometers,
is shown in Figure 4-2 and does show increasing
D2 with increasing h, indicating potential
non-stationarity.

d. Generdly, thereisalarge amount of scat-
ter in these plots, as seen in Figure 4-2, and this
scatter can conceal the central behavior of D? with
h. One way to estimate the central tendency and to
minimize the effect of aberrant data valuesisto
collect the D? into K bins or lag intervals of width
(Ah), , k=1,..K and assign to ¥ the average of the
values of D? in each bin. This processissimilar to
the way data are placed in bins for obtaining histo-
grams. The expression for the kth average bin
vaueis

y(h) = (4-2)

> Dl ()

2N (hk)

where N(h,) is the number of squared differences
that fall into bin k, and h, is the lag distance asso-
ciated with bin k. I,(h;;) is an “indicator function”
that has avalue of oneif the h;; fallsinto b|n k and
zero otherwise (it only incl udes values of D

the calculation that have an h;; that falls |nto the
bin). Thelag value h, can bethe midpoint of the
bin or it can be the average of the actual lag values
for the points that fall in the bin.

4-3
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e. Toestablish bins, either equal bin widths
are specified and the distance between the two
most separated data points, h,,, is subdivided
according to these equa increments, or aK is
chosen that defines the bin width. For the Sara-
toga data, a bin width of about 8 km established
K=12 binsfor y. They points computed from the
binned ij values of Figure 4-2 are shown in Fig-
ure 4-3. Thelag plotting positions are the average
h vauesin the bin. The symbol x indicates that
N(h) isless than 30 pairs for the particular bin and
this differentiation will be discussed in section 4-3.
Although the sample variogram is still preliminary,
its general behavior at this stage is adequate to
indicate if nonstationarity needs to be addressed
before sample variogram refinement is undertaken.

4-3. Nonstationarity

a. Anindication of substantial nonstationarity
or drift in the spatial mean would be a parabolic
shape through all lagsin aplot of ¥. This shape
occurs because differences between data contain
differences in the drift component that increase as
h increases. If Equation 2-16 is inserted into
Equation 2-17, squaring the differencesin p
greatly amplifies the increase with h. In these
cases of drift, generally alow-order (lessthan
three) polynomia drift in (u,v) isfitted to the data
and subsequently subtracted from the datato
obtain residuals. Trend surfaces are not neces-
sarily limited to polynomial forms. For example, a
numerical model of groundwater flow may be used
to obtain residuals of groundwater head data.

b. Intheory, the polynomial trend reflects a
slowly varying drift in the spatial mean and, as
such, one regiona trend surface should be fitted to
al the data. However, often the drift and residuas
are obtained localy; that is, using moving neigh-
borhoods of locations. Estimates of these values at
any point are thus made using a reduced number
(usually between 8 and 16) of surrounding loca-
tions. Thisis done because ultimately the kriging
estimates are made using only the data valuesin
the given neighborhood. Manipulating the kriging
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matrices takes less time when a smaller number of
data values are used to make estimates and these
efficiencies can be significant when dealing with
large data sets. Little accuracy islost because the
nearest neighbors are the most influential in the
kriging weighting scheme.

c. A parabolic shapetoy for the Saratoga
datais shown in Figure 4-3 for the sample vario-
gram points plotted for lags up to about 32 km (the
first four points) and for lags beyond about 56 km.
The presence of a parabolic shape in the sample
variogram points was not surprising, because
examination of the data indicates a north-south
gradient in the groundwater levels. The smplest
polynomia trend, linear in u and v, was fitted to al
the data using ordinary least-squares estimation.
Residuals obtained by subtracting this regional
trend surface from the data were used to reestimate
¥ in Equation 4-2 and the sample variogram for the
residualsis shown in Figure 4-4.

4-4. Variogram Refinement

a. Inthe previous section, aninitial ¥ was
specified by points computed from Equation 4-2.
In generd, the larger N(h,) isfor any bin or lag
interval k, the more reliable will be the points
defining y(h,). Also, thelarger K is, the greater the
number of sample variogram points shaping ¥.
However, N(h,) and K are competing €lements of
¥. Journel and Huijbregts (1978) suggest that
each lag interval k should have N(h,) equal to at
least 30 pairs. The American Society for Testing
and Materials (Standard D5922-96) suggests
20 pairsfor each lag interval. For small data sets
the number of intervals may have to be small to
guarantee either number of recommended pairsin
all intervals.

b. Itisdifficult to determine the minimum
number of data values n needed to satisfy the N(h,)
requirements for all lag intervals of a sample vari-
ogram. Simple combinatorial analysis can estab-
lish a sample size needed to achieve agiven tota
number of distinct pairs of items taken from the
sample, but it does not address the spatial

4-6

considerations needed for proper lagging. Asan
example, for data collected on a uniform grid and
equal-sized bins, fixing an n to just satisfy the
minimum N(h,) for the smaller lagswill yield
insufficient data pairs to meet the minimum N(h,)
for the larger lags. Fixing an n to assure the mini-
mum N(h,) for the larger lags will generaly have
N(h,) much greater than the minimum for the smal-
ler lags. Therefore, the question of how much data
is required to adequately compute a variogram
should also address the relative locations of the
data-collection sites.

c. Thefirst 10 of the 12 binsfor ¥ for the
Saratoga data contained more than 30 data pairs.
Therefore, the bin width can be decreased to get
more points defining the early part of . These
bin-width adjustments can be made to refiney
whether it is computed from the data or from the
residuals. A plot of ¥ for the residuals for the Sar-
atoga groundwater el evations with the bin width
narrowed to about 6.5 km is shown in Figure 4-5.

d. Spatia dataare usualy not collected on a
uniform grid but occur in a pattern that reflects
problem areas, accessibility, and general spatial
coverage. In the Saratoga data set, nonuniform
data spacing resultsin the number of data pairsin
each bin, although still greater than 30, being
highly variable among the bins. This variahility
yields different reliabilities for the points defining
V. To establish abalance for N(h,) among the
bins, variable bin sizes can be used so that each
bin contains approximately the same (large) num-
ber of points. A bin with fewer points can be
coalesced with an adjacent bin to form awider bin
with a greater number of points. Conversely, abin
with an excessive number of points can be sub-
divided into adjacent, narrower bins. The coales-
cing and subdividing procedure is largely trial and
error, until the distribution of the pairs of pointsis
satisfactory to the investigator.

e. Thevauesof y at the smaller lag values
are the most critical to define the appropriate y.
Therefore, the trade-off between the number of
bins and the number of data pairs within each bin
can be varied for different regions of the sample
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variogram. At smaller lags, the numbers of data
pairs per bin can be nearer the minimum N(h,) to
define more bins. At larger lags, a smaller number
of wider bins would be adequate. Knowing that
the variogram should be a smooth function, ulti-
mately the analyst visually decides when the sam-
ple variogram is sufficiently defined at all lags to
adequately approximate a theoretical variogram.

4-5. Transformations and Anisotropy
Considerations

a. Transformations.

(1) A transformation is applied to a data set
generally for one of two interrelated purposes.
First, a transformation can reduce the scale of
variability of highly fluctuating data. Thisvaria-
bility would especialy occur with contaminant
concentrations in which order of magnitude
changes in data at proximate sites are not uncom-
mon. The effects of such data would be erratic
sample variogram points as exhibited by alarge-
amplitude, ill-defined sawtooth pattern of the lines
connecting the points.

(2) Second, aproper transformation of data
whose probability distribution is highly skewed
often produces a set of values that is approxi-
mately normally distributed by mitigating the
influence of problematic extreme data values. A
data set with anormal distribution isimportant in
kriging when confidence levels of the estimates are
desired. Thisusage of confidence levelsin a
kriging analysis will be illustrated in Chapter 5.

(3) Among the more common transformations
isthe natural log transform. Asan example, for
this transformation, they will be the sample vari-
ogram vaues of logarithms, and subsequent kriged
estimates will be logarithms. Another transfor-
mation that is often used, especialy in spatia
analyses of contaminant levels, is the indicator
transformation described in Chapter 2. Although a
transformation might achieve better-behaved sam-
ple variogram points, there are subtleties to
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congider in interpreting the kriging results of the
transformed data or in back-transforming kriging
results into the untransformed (original) units, as
discussed in Chapter 1. If a satisfactory variogram
of the origina data cannot be achieved and atrans-
formation isindicated, the sample variogram com-
putation process must begin again with Equa-

tion 4-2. Even though no transformation was
needed for the Saratoga data, an example using a
logarithmic transformation and an example using
the indicator transformation are presented in
Chapter 5.

b. Directional variograms and anisotropy.

(1) Anisotropy in the data can be investigated
by computing sample variograms for specific
directions. Locationsincluded in a given direction
from any other location are contained in a sector of
acircle of radius h,,, centered on the location.

The sector is specified by two angular inputs. The
first is a bearing defining the specific direction of
interest [measured counterclockwise from east
(=0°] and the second is a (window) angle defining
an arc of rotation swept in both directions from the
bearing. Thus, in the terminology used here, the
total angle defining a direction is equa to twice the
window angle. Differencesin sample variograms
computed using these angle windows specified for
different directions can be an indication of
anisotropy.

(2) Anisotropy is generally either geometric or
zona. Geometric anisotropy isindicated by direc-
tional theoretical variograms that have a common
sill value, but different ranges. The treatment of
geometric anisotropy is dependent on the software
used. Thelags of the directiona variograms can
be scaled by the ratio of their ranges to the range
of astandard or common variogram. In some
cases, the lags of all directional variograms are
scaled by their respective ranges, and a common
variogram with arange of 1isused. Groundwater
contaminant plumes often have geometric aniso-
tropy in which the prevailing plume direction
would have a greater range than that of the transect
of the plume.
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(3) Zona anisotropy isindicated by direc-
tional variograms that have the same range but
different sills. Pure zona anisotropy is usually not
seen in practice; typically it isfound in combina-
tion with geometric anisotropy. Such mixed
anisotropy may be encountered if evaluating the
variograms of three-dimensional HTRW sampling
results. Variability of such data (asindicated by
the sill of the variogram) may be significantly
higher and the range significantly shorter in the
vertical direction than in the horizontal direction.
In order to model this mixture of anisotropic vari-
ograms, the overall variogram is set to aweighted
sum of individual models of the directional vario-
grams scaled by their ranges. In this process,
called nesting, the choice of weights requires atria
and error approach with a constraint that the sum
of the weights equals the sill of the overal vario-
gram. Thereader isreferred to Isaaks and
Srivastava (1989, pp. 377-390) for further infor-
mation on both types of anisotropy.

(4) For agiven number of data locations,
directional sample variograms will necessarily
have fewer points for any lag when compared to
the points for the same lag in the omnidirectiona
variogram. Hence, there will be lessreliability in
the directional-variogram point values, which
would be a critical constraining factor for small
data sets or for a data pattern that does not con-
form to a direction of anisotropy. For ageneral
idea of the sufficiency of the data to adequately
determine any anisotropy, the computations of
anisotropic sample variograms can be initialy
limited to two orthogonal directions with window
angles of 45 deg.

(5) Directional sample variograms aso can be
used to further delineate nongtationarity of the
spatial mean. If the omnidirectional sample vario-
gram indicates a drift in the data, the directional
variograms may determine the dimensionality of
the drift. That is, although they may not establish
the degree of the polynomial in the drift equation,
the directional sample variograms can indicate the
relative strengths of the drift in theu and v
directions.

4-10

(6) The computed sample variograms for the
genera north-south and east-west directions for the
Saratoga data are shown in Figure 4-6. The north-
south variogram is specified by a direction angle of
90 deg and awindow angle of 45 deg. The north-
south variogram reveals the preferential north-
south data alignment by mimicking the omni-
directional (direction angle = 0 deg and window
angle = 90 deg) sample variogram of Figure 4-3.
The east-west variogram is specified by a direction
angle of 0 deg and awindow angle of 45 deg. The
lack of pairs of locations for the east-west vario-
gram precludes agood analysis for this direction,
but the overlap of the few sufficiently defined
variogram points with the north-south variogram
indicates a consistency of drift in the two direc-
tions. Because of this consistency, an isotropic
variogram is assumed for the Saratoga residuals.
An example of anisotropic variograms is described
in Chapter 5.

4-6. Fitting a Theoretical Variogram to the
Sample Variogram Points

a. General.

(1) Theimportance of adequately defining the
bin values of a sample variogram is substantiated
by the need to accurately generalize the data-based
behavior of the sample variogram by a theoretical
variogram y. The parameters controlling the spe-
cific behavior of theoretical variograms are the
nugget value, the range, the sill, or in the case of a
linear variogram, a slope parameter. Of these
parameters, the nugget and the sill can be related to
properties and statistics of the data.

(2) The nugget is essentialy the extrapolation
of the sample variogram to alag of zero. It
reflects the uncertainty of the variogram at lags
that are much smaller than the minimum separation
between any two data locations. The nugget value
can include measurement error variance, and an
estimate of this variance will approximate a mini-
mum value of the extrapolation.
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(3) The sl determines the maximum value of
avariogram and approximates the variance of the
data. However, the points defining ¥ take prece-
dence over the sample variance in locating the sill.
Some variograms are unbounded, and others may
only reach a sill value asymptotically. A defined
sill alows conversion of the variogram to a covari-
ance function using Equation 2-27, which is gen-
erally done because computations in the kriging
algorithms are more efficiently performed using a
covariance function.

(4) Fitting afunction to the sample variogram
values can range from avisua fit to a sophisti-
cated statistical fit. A statistical fit is an objective
method as long as the choice of bins and weighting
of the sample variogram points remain fixed.
However, because the inputs will vary with investi-
gators, inherent subjectivity persistsasin avisual
fit. A fina calibration of the variogram param-
eters would be based on the kriging agorithm and,
thus, either of the initid fitting methods at this
stage would suffice.

(5) Becausetheinitia part of the variogram
has the most effect on subsequent kriging output, a
good estimate of the nugget val ue becomes a most
important first step. The range and the sill, in that
order, complete the ranking of the influence of
variogram parameters on the output of a geostatis-
tical analysis. Whatever the fitting method used,
the theoretical variogram needs to be supported by
the sample variogram values. For variograms with
arange parameter, this support should extend to
the range. Journel and Huijbregts (1978) suggest
that this support should be through one-half the
dimension of the field or essentialy through one-
half the maximum lag distance of the sample data.

(6) Most geostatistical studies can be success-
fully completed using the following four singular
theoretical variogram forms. exponential, spheri-
cal, Gaussian, and linear functions (Figure 2-3).
For the example variogram determination
described in this section, only one of these singular
formswill be selected; however, positive linear
combinations of these forms aso are acceptable as
theoretica variograms (see section 4-5b).
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Geometric relationships to aid in obtaining param-
etersfor the four variogram forms are described in
the following sections and are illustrated in Fig-
ure 2-3 for reference.

b. Exponential variogram.

The exponential variogram (Equation 2-23) is
specified by the nugget g, sill s, and a practica
range valuer. Therangeisqualified as practical
because the sill is reached only asymptotically.
Theinitial behavior of the exponential variogram is
different from the behavior of the spherica vario-
gram in that the convex behavior extends to the
nugget value (Figure 2-3). Again, anugget value
and asill value are first specified based on the
points. The practical range is chosen so that the
value of the resulting exponential function evalu-
ated at the practical range lag is 95 percent of the
sill value. The specified exponentid function
would mesh with the sample variogram points at
least through the practical rangelag. Aninitial
estimate of the practical range can be made by
checking if the intersection of the sill value with a
line tangent to the variogram at the nugget isat a
lag value equal to one-third of the assumed prac-
tical range value asillustrated in Figure 2-3.
Examples of the exponentia variogram may be
found in spatial studies of sulfate and total alka-
linity in groundwater systems (Myers et al. 1980).

c. Spherical variogram. The spherical vario
gram parameters (Equation 2-24) are a nugget
valueg, aranger, and asill s. Atsmaller lag
values the sample variogram points indicate linear
behavior from the nugget that then becomes con-
vex and reaches a sill value at somefinite lag
(Figure 2-3). A sill isestimated, and aline drawn
through the points of the initia linear part of the
variogram would intersect the sill at alag value
approximately equal to two-thirds of the range.
With these estimates of the parameters, a spherical
variogram is defined that should be supported by
the sample variogram points. If the spherical plot
does not fall near the sample variogram points,
adjustments need to be made to the parameter esti-
mates and the subsequent fit evaluated. Although
the spherical variogram is one of the most often



used models for real valued spatial studies, it
seems to be a predominant model for indicator
values at various cutoff levels as, for example, ina
study of lead contamination (Journel 1993).

d. Gaussian variogram. The Gaussian vario-
gram parameters (Equation 2-25) are a nugget
value g, and asill s, and this variogram also has a
practical range r. The Gaussian variogram is hori-
zontal from the nugget, becomes a concave upward
function at small lags, inflects to concave down-
ward, and asymptotically approaches asill value
(Figure 2-3). After anugget value and sill value
are specified based on the points, the variogram
value at alag of one-half the estimated practical
range will be two-thirds of the sill value. Again,
this fitted variogram needs to be supported by the
¥ pointsto areasonable degree. Aswill be
described in the example using the Saratoga data,
the Gaussian variogram often is used where the
variable analyzed is spatially very continuous,
such as a groundwater potentiometric surface.

e. Linear variogram. Parametersfor alinear
variogram (Equation 2-26) are a nugget value g,
and adlopeb. Sample pointsindicating alinear
variogram would increase linearly from the nugget
value and fail to reach a sill even for large lags
(Figure 2-3). With the nugget as the intercept, the
slope is computed for the line passing through the
¥ points. A pseudosill s can be defined as the
value of the line at the greatest lag, h,,,,, between
any two locations. This lag becomes the defacto
range r for alinear variogram. Examples of the
usage of the linear variogram occur in hydrogeo-
chemical studies of specific conductance and in
studies of trace elements such as barium and boron
(Myerset a. 1980).

4-7. Additional Trend Considerations

a. If adriftinthedataisindicated asin sec-
tion 4-3, the theoretical variogram of residuals
that has been fitted thus far is used to update the
drift equation. Although ordinary least squares
often suffices for computing a polynomia drift
equation, drift determination itself is afunction of
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vy when the data are spatially correlated. But vy
cannot be estimated until a drift equation is
obtained to yield the residuals. Therefore, abtain-
ing a sample variogram and a subsequent theoreti-
cal variogram from drift residuals of a specified
drift form is an iterative process (David (1977),
pp. 273-274) framed by the following steps:

(1) Aninitial variogram is specified and drift
coefficients are computed to obtain residuals. For
this step, a pure nugget (i.e. constant) variogram
can be used to compute the initial estimates of the
drift coefficients. Thisisan ordinary least-squares
estimate of the drift yielding afirst-iteration sam-
ple variogram of residuals.

(2) A theoretical variogram is fitted to the
sample variogram of the residuals and is used to
obtain updated drift coefficients.

(3) Theresidualsfrom the drift obtained in
step b are used to compute an updated sample
variogram.

(4) The sample variogram computed at the end
of step 3 is compared to the sample variogram of
step 2. If the two sample variograms compare
favorably, then the theoretical variogram from
step 2 is accepted as the variogram of residuals for
subsequent kriging computations. If the sample
variogram from step 3 differs markedly from the
sample variogram of step 2, steps 2-4 are repeated
using the sample variogram of the most recent
step c.

b. Generdly, the plot of the points of ¥ from
a set of resdualswill initially increase with h,
reach a maximum, and then decrease as seen in
Figure 4-4. Thistypica haystack-type behavior,
discussed by David (1977, pp. 272-273), is attri-
buted to a bias resulting from the estimation error
in the drift form and its coefficients. Thus, this
behavior in the variogram of the residuals gen-
erally would more readily occur with a higher
degree of drift polynomia. This behavior should
not prohibit acceptable variogram determination
because the initial points of the sample variogram
of residuals are still indicative of the theoretical
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variogram. For example, the lag associated with
the maximum of ¥ of the residuals can be a good
first approximation for the range of the theoretical
variogram.

4-8. Outlier Detection

a. Outliersin adata set can have a substantial
adverse effect on ¥. However, divergent data
values can be screened for evaluation using a
Hawkins statistic (Hawkins 1980), which is
described in the context of kriging by Krige and
Magri (1982). A neighborhood containing 4 to 10
data points, approximately normally distributed,
around each suspected outlier must be defined.
Despite potential outliersin the data set, a best
guess initial theoretical variogram also is needed.

b. The Hawkins statistic is obtained by com-
paring a suspect datum to the mean value of the 4
to 10 surrounding data, the smaller number being
sufficient if the variability islower. The spacing
between these surrounding points is accounted for
by the properties of the chosen variogram. A value
for the statistic of 3.84 or higher would indicate an
outlier on the basis of a 95-percent confidence
interval. A larger number of surrounding points
has the direct effect of increasing the magnitude of
the statistic. Anomalous points are removed from
the data set and the procedures described for
obtaining the sample variogram are repeated for
the smaller data set. There were no outlier prob-
lems in the Saratoga data.

c. Thereis debate anong geostatisticians
regarding the merit of automated outlier-detection
methods. A procedure such as that described here
is presented as an investigative tool with the under-
standing that the investigator will also use atten-
dant judtification along with a Hawkins-type
dtatistic to ultimately decide if adatavaueis
discarded as atrue outlier or retained asavalid
observation. In some situations, highly problem-
atic data values are removed for computation of
the sample variogram points but are reinstated for
kriging.
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4-9. Cross-Validation for Model
Verification

a. General.

(1) Parameters of the theoretical variogram
obtained from the initia fitting and refinement of
the sample variogram are calibrated using a krig-
ing cross-validation technique. In this procedure,
the fitted theoretical variogram is used in akriging
analysisin which data values are individually sup-
pressed and estimates made at the location using
subsets of the remaining points. Asdescribed in
section 4-3, these subsets are the data points in a
moving neighborhood surrounding the point under
consideration. The calibration estimate made at
each data location requires a matrix inversion,
which could be very time-consuming if al remain-
ing data locations were used to construct the
matrices rather than just those within a neighbor-
hood of alimited search radius.

(2) After kriged values at all data locations
have been estimated in the above manner, the data
are used with their kriged values and kriging stan-
dard deviation to obtain cross-validation statistics.
A successful calibration is based on criteria for
these statistics, which are described in the next
section. If the criteria cannot be reasonably met by
adjusting the parameters in the given theoretical
variogram function, then calibration should be
reinitialized with a different theoretical variogram
function. In some data sets with nonstationary
spatial means, the drift polynomial may have to be
changed as well as the variogram to achieve a
satisfactory calibration.

b. Calibration statistics.

(1) Thekriging cross-validation error e; cor-
responding to measurement z(x;) is defined as

6=2() -2() (3

where 2 (x)is the kriged estimate of z (x) based
on the remaining n-1 measurementsin the data set.



The kriged estimate is obtained by ordinary kriging
if the spatial mean is constant or by universal krig-
ing if the spatial mean is not stationary. A reason-
able criterion for selecting a theoretical variogram
would be to minimize the squared errors, E e,z,
with respect to the variogram parameters. How
ever, unlike ordinary least-squares regression,
which also minimizes the sum of squared errors,
simply minimizing the squared errorsis not suffi-
cient for kriging because the resulting model can
yield highly biased estimates of the kriging vari-
ances, oi (%), where oi (xi)isthe kriging vari-
ance at location x;. This simple minimization
would give unrealistic measures of the accuracy of
the kriging estimates. To guard against such bias,
an expression for the square of areduced kriging
error is defined:

2
éiZ — zei (4_4)
Ok (li)

where the kriging variances are computed using
either Equation 2-36 or 2-47. If the kriging vari-
anceis an unbiased estimate of the true mean-
squared error of estimate, then the reduced kriging
errors would have an average near one. Therefore,
the standard cross-validation procedure for evalu-
ating atheoretical variogramiis.

n 0.5
min [1 Yy e,z]
ni=1 (4-5)

n 0.5
subject to [1 Y éz) ~ 1
n

i=1

(2) Theexpression to be minimized is called
the kriging root-mean-squared error and the con-
dtraint is called the reduced root-mean-squared
error. The reduced root-mean-sgquared error
should be well within the interval having endpoints

1+ [2 E) and 1 - [Z\IE) (Delhomme
n n

1978). An additional check on the cross-validation
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results is the unbiasedness condition where

ye-o
n

(3) Asindicated in Chapter 2, if probabilistic
statements concerning an actual value of Z at an
unmeasured |ocation are to be made relative to the
kriged estimate and the kriging variance at the
location, it is necessary to explore the distribution
of the cross-vaidation kriging errors. In particu-
lar, it is desirable that the reduced errors, ;
=1,2...,n, are approximately normally distributed
with mean 0 and variance 1. A histogram or nor-
mal probability plot of the reduced kriging errors
can be used to assess the validity of assuming a
standard normal distribution for the reduced krig-
ing errors. Additionaly, if the distribution of
reduced kriging errors can be assumed to be stan-
dard normal, outliers not detected using the method
discussed in section 4-7 may be detected by com-
paring the absolute values of the reduced kriging
errors to quantiles of the standard normal
distribution.

(4) Using the Saratoga data, a spherical vario-
gram was fitted to the refined sample variogram of
theresiduals. The estimated nugget was about
1.49 m?, the sill was 133.8 m?, and the range was
about 48 km. Because of difficulty in determining
an exact extrapolated value for the nugget, the
value of 1.49 m? was selected based on an esti-
mated measurement error related to obtaining
water levels at the well depths in the Saratoga
valley.

(5) After two iterations using drift residuals,
as described in section 4-7, afinal variogram was
chosen with anugget of 1.49 n?, asill of 148.6 m?,
and arange of 44.8 km (Figure 4-7). These
parameters defined the theoretical variogram used
to obtain the cross-validation errors using univer-
sal kriging with an assumed linear drift. The best
combination of statistics that could be obtained
after several attempts at refining the model were a
root-mean-squared error of 3.45 m and a reduced
root-mean-squared error of 0.5794. The
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reduced-root-mean-squared error istoo small,
indicating that the kriging variances produced by
the model are too large compared to the actual
squared errors. Thisfact, coupled with the rather
large root-mean-squared error, makes the theo-
retical variogram model unacceptable. In sec-
tion 4-9c, a Gaussian variogram is fitted to the
data that produces much better cross-validation
results than the results for the spherical variogram.

c. Variogram-parameter adjustments.

(1) If any of the cross-validation statistics
vary unacceptably from their suggested values,
minor adjustments to the variogram parameters
can be made to attempt to improve the statistics.
Whatever modifications are made to the param-
eters, they should not have to be so severe that the
variogram function dragtically deviates from the
sample variogram points. If the support of the
sample variogram points is compromised in order
to achieve acceptable cross-validation results with
the given drift-variogram model, a different drift-
variogram combination should be investigated.

(2) A reduced root-mean-squared error that is
unacceptable may be improved upon by adjusting
the range parameter or the nugget value of the
variogram. Modifying the range parameter should
be considered first and any shifts in the nugget
value should be minimal and made only as afina
recourse. Calibration errors are relatively insen-
sitive to minor adjustments of the sill.

(3) If the reduced root-mean-squared error is
too small, asin the Saratoga example, extending
the range (equivalent to decreasing the dope for a
linear variogram) will decrease the kriging vari-
ance and thus increase the reduced root-mean-
squared error. If ashift in the nugget value is
required, a decrease in the nugget will reduce the
kriging variance. If the reduced root-mean-
squared error istoo large, then a contraction of the
range or a positive shift in the nugget value can be
made, keeping in mind the above cavest of priority
and extent of the changes. Changes in these

4-17
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parameters, generally, also will have an effect on
the mean-squared error. The larger the nugget is
as a percentage of the sill, the larger the mean-
squared error will be. In general, improvementsin
one statistic are usually made at the expense of the
other statistics. The optimization of the statistics
asasetis, in effect, atrial and error procedure that
is operationally convergent.

(4) Reduced kriging errors may not approxi-
mate a standard normal distribution. If thisisthe
case, atransformation of the data may be needed
to achieve amore normal distribution, and the
variogram estimation procedure would be repeated.

(5) Because no convergence could be reached
for parameter values of a spherical variogram for
the Saratoga data, a Gaussian theoretical vario-
gram was fitted to the sample variogram of
residualsin Figure 4-4. This choice was made
because the initial sample variogram points could
be interpreted to have a dight upward concavity,
but eventually reached a sill. This behavior can be
attributed to correlation rather than to further drift.
After an iterated cross-validation with the Gaus-
sian parameters, a Gaussian variogram with a
nugget of 1.49 m?, asill of 185.81 m?, and arange
of 27.52 km (Figure 4-8) yielded a root-mean-
squared error of 2.33 m and a reduced-root-mean-
squared error of 1.083. The mean cross-validation
error is 0.0195 m. These values represent an
improvement over the spherical variogram and
were deemed acceptable for the Gaussian
variogram.

(6) A probability plot of the reduced kriging
errors using the final Gaussian variogram is shown
in Figure 4-9. It isreasonably linear between two
standard deviations and, thus, approximates a
standard-normal-distribution function. Finally, a
plot in Figure 4-10 of the data versus their kriged
estimates indicates that the linear drift-Gaussian
variogram model selected for the Saratoga data
would produce accurate estimates of groundwater
elevations for interpolation or contour gridding in
theregion.
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Chapter 5

Practical Aspects of Geostatistics in
Hazardous, Toxic, and Radioactive
Waste Site Investigations

5-1. General

a. Inthischapter, several example applica-
tions are described. The applications have been
developed using hydrologic, geologic, and contami-
nant data from established and well-studied haz-
ardous waste sites. The real nature of the data
permits discussion of some problems that can
occur during HTRW dite investigations that stem
not only from natura field conditions, but also
from typical problemsthat are associated with the
types of datainvolved. In addition, the real nature
of the example data provides an opportunity for
comparison between kriging estimates and the real
data. 1n accordance with the purpose and scope of
this ETL, these comparisons will be brief and
general. ThisETL does not provide the compre-
hensive analysis of data that is addressed by other
more elaborate studies.

b. The principal intent of the examplesisto
provide systematic descriptions for afew of the
large number of possible types of applications that
investigators may use during HTRW site investi-
gations. The examples are not intended to provide
guidance for comprehensive analysis of the
included data. This ETL will, however, present
some fundamental problems that can occur in
geodtatistical applications and, in some examples,
indicate some possible aternatives.

c. With each example, a purpose will be
established and a general environmental setting
will be given. Most aspects of variogram con-
struction and calibration will be briefly described
and illustrated graphically and in tabular form. A
comprehensive treatment of variogram construc-
tion has been presented in Chapter 4.

d. GEO-EAS software has been used when-
ever the example data did not need universal krig-
ing; for those examples, STATPAC was used. As
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indicated in Chapter 3, both of these software
packages run on the DOS platform (Table 3-1),
which will probably be most convenient to readers.
The results of kriging estimates are portrayed by
gray-scale maps rather than by contours because
of the objective nature of the gray-scale format.
North is at the top of al maps presented in this
ETL, athough this orientation may represent some
deviation from the real data.

5-2. Water-Level Examples

a. Thefollowing examples are for ground-
water levels. The principal purpose of the exam-
plesisto expose the reader to a kriging exercise
using groundwater levels and to indicate how, in a
simple manner, kriging standard deviations may be
useful to investigators interested in evaluating
monitoring networks. The data come from a
water-table setting in unconsolidated sediments
where the local relief for the land surface is about
30 m. The datainvolved in this example are con-
sidered virtualy free of actual measurement error.

b. Thelocation of measured water levelsis
shown in Figure 5-1a and the basic univariate
statistics for this data set are listed in Table 4-1;
modifications to the measured data, in the form of
addition and remova of measured values, are
shown in Figures 5-1b and 5-1c. The techniques
described in Chapter 4 were used to guide the
following steps for variogram construction:

(1) A raw variogram analysis, along with
basic hydrologic knowledge of water-level behav-
ior, indicated that universal kriging would be
needed for this anaysis.

(2) To obtain astable variogram of residuals,
an iterative, generalized |east-squares operation
was initially used to remove prominent linear drift
of theform a + bu + cv, observed in the measured
water levels.

(3) After drift was removed, residuals were
determined to be stationary and universal kriging
with alinear drift was appropriate.
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A Gaussian model was used to fit the stabilized
variogram of residuals (Figure 5-2a), which has a
nugget of 0.093 m?, asill of 2.69 m? and arange
of 1,219 m (Table 5-1).

(5) Cross-validation was performed, and the
results are shown in Figures 5-2b and 5-2¢, and

listed in Table 5-1. Cross-validation statistics
conform to the criteria discussed in Chapter 4.

c. Linear drift iscommonly observed in
groundwater elevation data where there are no
major anthropogenic activities, such as large
groundwater withdrawals. With these
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Figure 5-1. (Sheet 2 of 3)

circumstances there is usually afairly uniform and
genera groundwater movement that is generally
expressed in terms of direction. This uniform and
general nature introduces a nonstationary element
to the data that, in geostatistics, is referred to as
drift. Asindicated in Chapter 4, the presence of
drift isindicated by a parabolic variogram shape.
In this example, theinitial variogram in the raw
variogram analysis had a characteristic parabolic

5-3

shape and alinear drift was identified. Once the
drift was identified and characterized, universal
kriging procedures were used.

d. A Gaussian model is usually appropriate
for variograms with highly continuous variables
such as groundwater-elevation data, and it is par-
ticularly appropriate in this example. The vario-
gram (Figure 5-2a) at small lags beyond the nugget
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has an upward concavity that cannot be fit with a
linear, spherical, or exponential model. The
observed shape was interpreted as a function of
continuous small-scale variability. The Gaussian
moddl fits the bowl shape of the small lag data
(and other datato alag of about 610 m) well, but
it is not flexible enough to closdly fit the points
much beyond 610 m, indicating that kriging esti-

54

mates should be computed using neighborhoods
with a search radius less than 610 m. In Chapter
4, theinitial part of the variogram was described
as having the most effect on subsequent kriging
estimates.

e. Theestablished variogram then was used
with the measured data to produce universal
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Figure 5-2. Variogram and variogram cross-validation plots for residuals in water-level example--A, theoretical
variogram; B, cross-validation scatterplot; C, cross-validation probability plot (Sheet 1 of 3)

kriging estimates for al pointsin a 26-by-26 grid
with agrid size of about 61-by-61 m. A gray-
scale map of the kriging water levelsis shown in
Figure 5-3a and basic univariate kriging estimate
dtatistics are listed in Table 5-2a (water level A).
The kriging results a are a good representation of
the results from other more elaborate studies.

f. Kriging standard deviations for the kriging
estimates are shown in Figure 5-3b. The magni-
tude of kriging standard deviations can provide
investigators with a direct indication of where the
uncertainty associated with kriging estimatesis
relatively high or low. The areas of greatest uncer-
tainty for the kriged water levels are in the upper
right and lower left corners of the map, where
standard deviations are as high as about 1.4 and
0.8. Not surprisingly, these areas are where the
density of the measured dataisrelatively low.
Throughout much of the remainder (about 70 per-
cent) of the map, the kriging standard deviation is
almost constant at about 0.35.

5-5

g. To usethekriging standard-deviation
values in amore quantitative manner, the investi-
gator needs to establish some assurance that the
measured data and the reduced kriging errors are
approximately normally distributed and a so that
the assumption of stationary residuals after drift
removal is correct. If the investigator is confident
about these assumptions, then the basic statistical
principles involving confidence intervals can be
applied. In this example, the standard deviation of
about 0.35 throughout most of the map indicates
that there is a 95-percent chance that the true value
a alocation where there is a kriging estimate will
be within about 0.70 (twice the kriging standard
deviation) of the kriging estimate.

h. Asan example of evaluating network
density and the accuracy of kriging estimates, two
new maps were developed. To make the first map,
adecrease in network density was effected by
removing nine measured locations from the north-
west part of the area (Figure 5-1b) where sampling
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density was high and kriging standard deviations
were low. Kriging estimates were produced for the
same grid and the basic univariate kriging estimate
dtatistics are listed in Table 5-2 (water level B).
The map shown in Figure 5-3c indicates that the
ratio of the original kriging standard deviations and
the kriging standard deviations with the nine mea-
sured locations removed is ways very close to
1.00, which indicates that there is very little dif-
ference between the two sets of kriging standard
deviations and that water levels are oversampled in
the area where the nine measured |ocations were
removed.

i. To produce the second map (Figure 5-1¢)
nine locations were added in the southwest corner
where the sampling density was relatively low and
the kriging standard deviation was relatively high.
In section 2-4, Equation 2-47 indicates that the
universal kriging variance depends on the vario-
gram, the type of trend, and measurement loca-
tions; in this respect the kriging standard deviation
does not depend on the values at measurement

locations. Consequently, values of zero were used
for the nine new measurement locations and only
the resultant map of kriging standard deviations
(Figure 5-3d) is of interest. The map shows that
the kriging standard deviations in the lower left
corner, which formerly had values of about 0.8,
have been decreased by afactor of approximately
0.25, which indicates that the kriging estimates,
based on the geometry of the network, are more
reliable.

5-3. Bedrock-Elevation Examples

a. Thefollowing examples are for bedrock
elevations. The principal purposes of the examples
areto familiarize the reader with akriging exercise
using bedrock elevations and to describe block
kriging. The data come from an area where bed-
rock consists of a series of intercalated terrestrial
deposits that have been weathered somewhat and
then covered with alluvium. The opportunity for
measurement error in these types of datais
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inevitable because the determination of just where
bedrock beginsis complicated and subjective.

b. The sat of measured locations, set A, is
shown in Figure 5-4a and the basic univariate sta-
tisticsare listed in Table 4-1 (bedrock A); modifi-
cations to the measured data, in the form of
removal of sitesis shown in Figure 5-4b. The
techniques described in section 4-1 were used to
guide the following steps for variogram
construction:

(1) Theraw variogram indicated a stationary
spatial mean. The data were assumed to be suit-
able for ordinary kriging.

(2) Anisotropic Gaussian model was used to
fit the variogram which had a nugget of 0.650 m?,
asll of 12.54 n?, and arange of 914 m
(Table 5-1, bedrock A).

5-7

(3) Cross-validation was performed, and the
results, (Table 5-1, bedrock A), were not
acceptable.

c. Thecrossvaidation exercise produced a
reduced-root-mean-squared error of 2.146
[Table 5-1 (bedrock A)] which indicates, as
described in Chapter 4, that the kriging variance is
underestimated to an unsatisfactory degree. Fur-
ther attempts to fit the Gaussian model to the
sample variogram points produced better cross-
validation statistics; however, the Gaussian curve
began to depart substantially from the sample
variogram points at the lower lag sample points.
As aresult, the distribution of the residuals was
explored, and the eastern, and especially north-
eastern, parts were determined to contain prob-
lematic data values that rendered the distribution
nonhomogeneous. The nonhomogeneous natureis
related to an incised channel present on the
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bedrock surface. At thisjuncture, the measured
data were restricted to exclude the outlying mea-
surements. Before this decision was made, two
alternative methods for dealing with the outlying
values were considered and deemed beyond the
scope of this effort. However, abrief discussion of
the situation is appropriate.

d. Thefirst aternative considered was to fit a
contrived and nongradual surface to the measured
data and remove the outlier effect. A splined sur-
face could be capable of producing the desired
result. The decision whether or not to pursue such
aremedy becomes somewhat philosophical. Ina
relatively simple example, asin this bedrock
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example, such aremedy may be entirely appro-
priate; however, some investigators may support
the idea that the situation is actually dealing with
two unique and homogeneous domains. Therefore,
the second alternative considered, distributing the
kriging process so that each homogeneous domain
is addressed independently, becomes more attrac-
tive. In more complicated applications where a
large number of domains are present, a distributed

5-10

approach may be necessary to avoid an undue
amount of compromise.

e. Therestriction of measured data, set B, is
shown in Figure 5-4b and the basic univariate sta-
tisticsarelisted in Table 4-1 (bedrock B). The
restriction exercise resulted in removing 17 meas-
ured locations and in the truncation of the north-
eastern part of the area so that the area became
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polygona rather than rectangular. Again, the tech-
niques described in Chapter 4 were used to guide
the following steps for variogram construction:

(1) A Gaussian model was used to fit the vari-
ogram which had a nugget of 0.650 m?, asill of
8.36 m?, and arange of 732 m. The variogram
indicated a stationary spatial mean.

(2) Initial cross-validation was performed, and
the nugget was changed from 0.650 m? to 0.743 m?
to improve cross-validation statistics. The final
variogram is shown in Figure 5-5a and character-
istics are listed in Table 5-1.
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Figure 5-3. (Sheet 4 of 4)

(3) Fina cross-validation was performed, and
the results, shown on Figures 5-5b and 5-5c and
listed in Table 5-1 (bedrock B), were acceptable.

f. Thelarge difference between the sill
defined for the initial data set and the sill for the
restricted data set (12.54 m? and 8.36 m?) supports
the hypothesis that the original data set is actually
two different domains. The final variogram then

5-12

was used, along with the measured data, to pro-
duce ordinary kriging estimates for all pointsin a
52-by-52 grid with a spacing of about 30-by-30 m,
which is truncated along the northeastern border
because of the restriction operation. For the krig-
ing procedure, a search radius of about 914 m
witha maximum of 16 and minimum of 8 sur-
rounding locations was specified. Gray-scale
maps of the kriging estimates and kriging standard
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Table 5-2
Univariate Statistics for Gridded Kriging Estimates in Example Applications®

Minimum Maximum Mean Median Standard
Example (Base (Base (Base base deviation Skewness
Identifier Transformation units) units) units) units) (base units) (dimensionless)
Water level A Drift 24.34 65.00 45.86 44.46 10.15 0.11
Water level B Drift 24.59 65.00 45.84 44.45 10.14 0.11
Bedrock B None 26.13 64.88 41.45 39.78 7.71 0.82
Bedrock C None 26.72 64.39 41.50 39.69 7.63 0.82
Water Natural log 2.92 7.07 5.17 5.03 0.72 -0.06
quality A

*Base units for water level A and B and bedrock B and C is feet; base unit for water quality A is log concentration, concentration in

micrograms per liter.

deviations are shown in Figures 5-6a and 5-6b,
respectively, and the univariate kriging estimate
dtatistics are listed in Table 5-2 (bedrock B). The
kriging results indicate channel-like features in the
bedrock surface, aswell as a prominent bedrock
high at the south border of the area; the results are
agood representation of the results from other
more elaborate studies.

g. For an example of block kriging, an invest-
igative goal of establishing block values of bedrock
elevation for afinite-difference groundwater model
grid having about 120- by 120-m cells was
assumed. The same variogram and search criteria
were used to estimate block values for a 13-by-

13 grid with about 120- by 120-m spacing; a
4-by-4 block was specified. Each kriging value
shown in Figure 5-6¢ is interpreted as an estimate
of the average value of bedrock elevation over the
about 120- by 120-m block. The standard devi-
ation for the block estimates is |ess than the stan-
dard deviation for the point estimates (Table 5-2).
Gray-scale maps of the kriging estimates and the
kriging standard deviations are shown in Fig-
ures 5-6¢ and 5-6d, and the univariate kriging
estimate statistics are listed in Table 5-2

(bedrock C).

5-4. Water-Quality Examples

a. Thefollowing examples are for water-
quality information consisting of concentrations

determined for a contaminant. The principal pur-
poses of the examples are to familiarize the reader
with a kriging exercise using water-quality infor-
mation and to illustrate indicator kriging. The
examples also will familiarize the reader with data
that are strongly anisotropic and need transforma-
tion. The data come from a water-table aguifer
developed in dluvid sediments where the depth to
water was less than about 23 m. Several analytical
laboratories were involved in measuring the con-
centration of the contaminant in the water-quality
examples. Each of the analytical |aboratories was
required to follow rather comprehensive guidelines
that specified tests of instrument performance
before sample determinations were made, as well
as measurement of extraction efficiencies.
Because of these performance guidelines, the
opportunity for errors due to instrument error was
considered to be either known or relatively low. In
addition to using performance guidelines, field
guality-assurance samples were aso collected.
These samples can be used to evaluate other types
of possible errors, such as cross-contamination
and representativeness of the sample. Duplicate
samples for the contaminant in the water-quality
examples indicate as much as 15 percent varia-
bility in reported results. This variability is not
entirely unusual and is most likely related to the
integrity of the analytical method or the method in
which the sample media was aggregated during
sample collection.
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b. Measured locations are shown in Fig-
ure 5-7 and the basic univariate statistics are listed
in Table4-1 (water quality A). Aninitia review
of the data indicated three important features.

(1) The data seemed to have strong anisotropy
at about 150 counterclockwise degreesto the east-
west baseline.

(2) The datarequired anatural log transfor-
mation so the distribution was approximated by a
normal distribution.

(3) No trends were indicated during prelimi-
nary exploration, and ordinary kriging was tenta-
tively selected as the appropriate technique.

c. Natural log transformations are routinely
needed for concentration data that vary over sev-
eral orders of magnitude, which iscommon in
areas of contaminant plumes. The data were
transformed to log space and fit acceptable criteria
for normality. After transformation to log space,
the techniques described in Chapter 4 were used
to guide the following steps for variogram
construction:

(1) An exponential moddl was used to fit a
directional variogram at an angle of 150 counter-
clockwise degrees to the east-west baseline. The
variogram had a nugget of 1.00 log concentration
squared, asill of 3.20 log concentration squared,
and arange of 1,295 m [Figure 5-8aand Table 5-1
(water quality A)].

(2) An exponential model was also fitto a
directional variogram at an angle of 240 counter-
clockwise degrees to the east-west baseline. The
variogram had a nugget of 1.00 log concentration
squared, asill of 3.20 log concentration squared,
and arange of 229 m [Figure 5-8b and Table 5-1
(water quality A)].

(3) Cross-validation was performed using the
geometric anisotropy of the two variograms and
the results [Figures 5-8c and 5-8d, and Table 5-1
(water quality A)] were acceptable.
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d. Theresiduals are symmetrically distribu-
ted, (Figure 5-8d). However, the scatterplot (Fig-
ure 5-8c) indicates that small concentrations are
overestimated and that large concentrations are
underestimated. This discrepancy in the estimates
does not indicate an error in the moddl, but rather,
indicates a consequence of data that have alarge
nugget compared to the sll; in this example the
nugget is approximately 30 percent of the sill. The
large nugget decreases the predictive capacity of
the model and increases the smoothing introduced
by kriging.

e. The established variogram then was used,
along with the measured locations, to produce
ordinary kriging estimates for al pointsin a 40-by-
20 grid using a grid spacing of about 91-by-91 m.
For the kriging procedure, a search radius of about
1,524 m with maximum of 16 and a minimum of
8 locations was specified. Gray- scale maps of
kriging estimates, back transformed to concentra-
tionsand in log space, as well as the kriging stan-
dard deviations in log space, are shown in Fig-
ures 5-9a, 5-9b, and 5-9c.

f.  The back-transformation procedure was a
simple exponentiation of the log space kriging
estimates. Such a back-transformation does not
use bias-correction factors to deal with moment
bias and, consequently, the back-transformed
values must be interpreted as a median value
rather than a mean value. The simple back-
transformation, however, is convenient and was
performed, principaly, to enhance visua inter-
pretation of the kriging estimates. Univariate sta-
tistics for the log-space kriging estimates are listed
in Table 5-2 (water quality A). The kriging results
do have noticeable smoothing; however, they also
indicate a plume emanating from an area just
northwest of the center of the area and movement,
aswell as some dispersion, to the southeast; the
estimates are a very good representation of the
results from many other more elaborate studies.

g. An additional comment concerning log
transformations is appropriate. To indicate the
effect of the log transform on probabilitiesin
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converting, or back-transforming, kriging esti-
mates, the kriging estimates and the kriging stan-
dard deviations, in log space, were used to estimate
the one-sided 95th percentile at each kriging-
estimate location according to the formula:

C 095

(5-1)
exp |Z (x) + 16450, (x)

where (2 Xo) (isthe kriging estimate at location x,,
in log space, and o,(X,) is the corresponding krig-
ing standard deviation in log space. The resulting
map is shown in Figure 5-9d. Such amap can be
used to indicate areas where the true concentration
has only a 5-percent chance of exceeding the value
shown.

h. To perform indicator kriging, the indicator
transformation, as described in Chapter 2, was
applied. An indicator cutoff equal to the median
value of 270 for the untransformed measured data
was selected. The model for indicator kriging esti-
mates the probability that the concentration would
be less than the indicator cutoff. The techniques
described in Chapter 4 were used to guide the fol-
lowing steps in variogram construction:

(1) No trendswere indicated during prelimi-
nary exploration, and ordinary kriging was tenta-
tively selected as the appropriate technique.

(2) A spherica model was used to fit an
anisotropic variogram at an angle of 150 deg
counterclockwise to the east-west basdline. The
variogram had a nugget of 0.05 indicator units
squared, asill of 0.25 indicator units squared, and
arange of 610 m [Figure 5-10aand Table 5-1
(water quality B)].
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(3) A spherical modd aso wasfit to an
anisotropic variogram at an angle of 240 deg
counterclockwise to the east-west basdline. The
variogram had a nugget of 0.05 indicator units
squared, asill of 0.25 indicator units squared, and
arange of 213 m [Figure 5-10b and Table 5-1
(water quality B].

i. The established variogram, along with the
indicator transform of the measured data, was used
to produce ordinary kriging estimates for the same
grid and search criteria as the first water-quality
example. A gray-scale map of the kriging esti-
mates is shown in Figure 5-11. The kriging indi-
cator map provides a gridded estimate for the
probability of contaminant values being less than
the indicator cutoff, which is a concentration of
270 in this example.

J.  The cutoff value selected for the preceding
indicator kriging example is probably higher than
many investigators involved in HTRW site investi-
gations would like to use. In this case the number
of measurements [66 in Table 4-1 (water qual-
ity B)] used in this example, which is probably a
high number of measurements for typical HTRW
site investigations, would not permit construction
of anindicator variogram for indicator values
much lower than the median. An aternative to this
problem would be to assume that the log-
transformed kriging model developed in the first
water-quality exampleis correct and to rely on the
kriging estimates from that model to determine
areas greater than or less than some indicator
value. The same estimates also could be used to
compute the probability that the concentration was
less than some arbitrarily selected value.
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Chapter 6
Review of Kriging Applications

This chapter will briefly treat three principa top-
ics; applicability of kriging techniques, important
elements that need to be addressed in kriging appli-
cations, and errorsin measured data. Much of the
information presented in this section has been
gathered from other sections of thisETL and is
presented collectively here. The items identified as
important to kriging applications may be helpful in
assessing kriging applications under review.

6-1. Applicability of Kriging

a. Inthe preceding sections of thisETL, the
theory of kriging techniques has been summarized,
and examples have been given to indicate the util-
ity of kriging techniquesin HTRW dsite investiga
tions. The examples presented were selected so
that kriging would provide satisfactory results or
be applicable. Additionally, the examples were
designed so that, for the purposes of demonstra-
tion, some sort of adjustment of the data was
needed; that is, drift was removed or transforma-
tions were made.

b. Investigators are very likely to have data
for which, athough, in astrict sense, kriging may
be applicable, results may be unsatisfactory. A
good deal of fundamental information that may be
used to establish how satisfactory application of
kriging techniques might be has been presented in
the preceding sections of thisETL. In particular,
Chapter 4 includes a detailed discussion on vario-
gram construction, the preliminary step in any
kriging application, and systematically describes
many decisions in this process that need attention.
If the investigator cannot construct or otherwise
obtain avariogram that has structure, then the
results of akriging application may not be satis-
factory. Some additional discussion designed to
guide investigators in evaluating the amount of
data that may be required for kriging applications
is presented in this section. This discussion will
assume that the measured data are correct; a
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separate and brief discussion of measurement
errors will aso be presented in this section.

c. Many investigators will have atendency to
focus on the amount of measured data that is avail-
able as an initial consideration. It isimportant for
the investigator to realize that decisions concerning
the applicability of kriging techniques cannot be
based ssimply on the amount of measured data.
However, unless the investigator is presented with
areliable variogram, the amount and spatia distri-
bution of measured data can be a constraint. If,
for instance, the investigator has fewer than 25
measured values at optimal locations from the
field, there may not be enough data to confidently
estimate Gaussian variogram parameters, a smaller
amount of measured data may be suitable for other
variogram models.

d. Theamount of data needed to apply krig-
ing techniquesis not easy to determine, but infor-
mation in thisETL, especially in Chapter 4, and
the literature cited can provide some guidance.
Section 4-4 points out that a good minimum for the
number of pairs of locations in each variogram lag
is 30 and the American Society for Testing and
Materials (Standard D 5922-96) has suggested that
20 may work well also. Most investigators would
probably feel comfortable defining a Gaussian
form (which, because it has moreinflection, is
more difficult to fit compared to the other standard
variogram models) with 8 to 10 optimally located
sample variogram points (enough points to define
the nugget, two areas of curvature, and the sill). In
thisideal case, about 25 measured values would be
needed to fulfill the conservative minimum of
30 pairsper lag. Inthiscase, therelatively few
measured data points need to be systematically
located so that the optimally located variogram
points can be computed. If the measured data were
not located systematically, asis usually the case,
then more measured data would be needed.

e. Once sample variogram points meeting the
required number of pairs of locations can be
defined, the investigator needs to have a resulting
variogram that has structure. The variogram, for
instance, may simply exhibit noise about a
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horizontal line and have no structure. If measured
data are clustered and the lags have been mini-
mized to meet the required number of pairs of loca-
tions, the variogram may seem horizontal because
it is dominated by small-scale effectsin the
clustered data. The investigator then has latitude
to adjust the lags and attempt to balance the lag
spacing and required number of pairs of locations,
as described in section 4-4. However, the vario-
gram could also seem horizontal because the actual
sill isreached within avery small lag. If that lagis
smaller than the minimum spacing of measured
data, obtaining structure in the variogram would
not be possible. If the investigator has a vario-
gram with no structure, the measured data need to
be considered independent, and kriging techniques,
at the lag of the measured data, would be ineffec-
tive or at least offer little advantage over other
interpolation techniques.

6-2. Important Elements of Kriging
Applications

a. Many important elements of kriging appli-
cations have been discussed in thiSETL. These
discussions have been presented as a systematic
and sequential method designed to provide guid-
ance in kriging applications. Occasiondly, an
investigator will be presented with the results of a
previous kriging application and will need to eval-
uate the application before deciding whether or not
to use the results. This section presents a brief
review of some important elements of kriging
applications that such an investigator may use in
that evaluation. For a more detailed discussion of
important elements of geostatistical applications,
the reader isreferred to the American Society of
Testing and Materials (Standard D 5549-94) for
content of geostatistical investigations.

b. The presence of or lack of stationarity in
the spatial mean needs to be demonstrated defini-
tively. If the spatial mean is nonstationary, then
drift isindicated and appropriate measures to
establish stationarity, which are smilar to the
measures presented in section 4-3, need to be part
of the application. Inideal situations,
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nonstationarity occurs as a gradual change.

HTRW site investigations may present cases,
especialy when dealing with water- quality datain
and around plumes, that have abrupt step-like
changes at plume boundaries and do not appear as
regiona drift. In these cases the investigator needs
to be aware that without knowledge of the plume
boundaries, points from within the plume will be
grouped with points from outside the plumein
computing the sample variogram. The effect of this
problem is minimized as long as the investigator
can define lags that allow data points within the
plume to be grouped together.

c. Theconstruction of the variogram needs to
be described. The description needs to address the
number of pairs of locations in each variogram lag
and to demondtrate that the variogram has struc-
ture. A plot of the variogram is helpful to demon-
strate the presence or absence of structure. The
variogram construction discussion also needs to
establish the presence of or lack of isotropy. If
anisotropy is present, its nature needs to be estab-
lished, and it needs to be addressed by variogram
adjustments similar to the adjustments presented in
section 4-5b.

d. Thevariogram cross-validation statistics
described in section 4-9 are useful and, if avail-
able, they can aid in the evaluation of a kriging
application; authoritative and definitive kriging
applications should include cross-validation.
Cross-vaidation statistics need to conform to the
guidelines discussed in section 4-9. Section 4-9b
indicates that the cross-validation exercise needs to
balance minimizing the kriging cross-validation
errors with efforts to guard against bias. Also, as
discussed in section 4-9b, if probabilistic state-
ments are part of the kriging application, there
needs to be some demonstration about the normal-
ity of the reduced kriging error such as the cross-
validation probability plots included with the
examples in Chapter 5.

e. Maps of the kriging estimates and standard
deviations need to be presented or discussed. The
maps of kriging estimates need to conform to any
gualitative information about the information



portrayed on the maps that is available to the
investigator. The maps of kriged standard devia-
tions can be used to determine where there are
large areas of uncertainty in the kriging estimates.

f. Finaly, the variogram and kriging algo-
rithms are most useful as interpolation rather than
extrapolation tools. Once the application extends
to areas beyond the geographic extremes of the
measured data, or perhaps those extremes plus the
range, there needs to be some qualification of the
area of extrapolation. For instance, in universal
kriging, the practitioner would need to have some
assurance that the conditions of drift defined in the
study area continue into the area of extrapolation.

6-3. Errors in Measured Data

a. Dataassociated with HTRW site investi-
gations have the same opportunities for errors that
most investigations do. The errors may involve,
among others, bias, inaccuracy, or lack of repre-
sentativeness. The classical nature of these errors
isdescribed in EM 200-1-2, “Technical Project
Planning,” (U.S. Army Corps of Engineers 1995),
which describes HTRW data-quality design.

b. The presence of contamination may com-
plicate the function of errorsin HTRW site
investigations. Because these investigations often
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concern contamination, there can be large ranges
of values for data involving contaminant concen-
trations, and these large ranges have a tendency to
increase the incidence of data that may seem to be
dtatistical outliers. Even more complicating isthe
presence of high concentrations of organic mate-
rias that may create challenging analytical prob-
lemsin laboratory determinations that also may
lead to reported values that seem to be statitical
outliers. In either case, the kriging practitioner is
likely to find that the apparent outliers have a
strong effect on the results of the kriging
application.

c. When HTRW steinvestigations find data
that seem to be outliers, the data need to be very
carefully evaluated before removal is seriously
contemplated. Automated outlier detection tools,
as suggested in section 4-8, may best be used to
identify points that may be outliers and warrant
further investigation. Often data that appear to be
outliers may be the most important and meaningful
data of all measurements. For example, in the first
case described in the preceding paragraph, appar-
ent outliers often are representative values. Inthe
second case, the reported value may be an errone-
ous determination that has been affected by the
extremely contaminated nature of the sample
matrix. The investigator needs to either possess or
have access to qualitative or institutional knowl-
edge that will aid in outlier interpretation.



Chapter 7
Other Spatial Prediction Techniques

7-1. General

a. Inthischapter, some aternative
approaches to spatial prediction are discussed. At
the beginning of Chapter 2, the distinction between
stochastic and nonstochastic techniques for spatial
prediction was discussed. Kriging, the main sub-
ject of this ETL, is a stochastic technique because
of the structure that isimposed in terms of an
underlying random process (the regionalized
variables) with joint probability distributions that
obey certain assumptions. Kriging yields the
predictor that is statistically optimal in the sense
that it isthe best linear unbiased predictor, given
certain assumptions that are detailed in Chapter 2.
There are other stochastic techniques that are less
well-known than kriging in applications, such as
Markov-random-field prediction and Bayesian
nonparametric smoothing (see Cressie (1991)), but
these will not be discussed here.

b. Severa techniques that are often applied
in a nonstochastic setting will be discussed. Tech-
niques applied in such a setting are typically
applied strictly empirically and not evaluated with
respect to rigorous statistical criteria such as mean
squared prediction error, although, as discussed in
Chapter 2, such criteriamay be applied in certain
of the techniques such as smple average and trend
analysis. It has been shown in thisETL that there
are some compelling advantages for assuming
some kind of stochastic setting. However, the sm-
plicity of not having to postulate and justify the
structure and assumptions inherent in stochastic
analyses might be considered one advantage of
nonstochastic techniques, and such an analysis
may be perfectly adequate for certain problems. In
addition to statistical optimality and smplicity,
there are other considerations in selecting a spatial
prediction technique, such as ease of computation,
sengitivity to data errors, and whether the predic-
tors are exact interpolators; that is, match the mea-
surements exactly at the measurement locations x;,
Xo-.., Xp- Thelast property is one that needs to be
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given careful consideration by the practitioner.
Kriging, asit isusualy applied, is an exact inter-
polator. Questions may be raised, however, about
whether thisis a desirable property if it is known
that the measurements are contaminated with a
considerable amount of measurement error. One
advantage of stochastic methods in general is that
existence of measurement error may be incorpo-
rated objectively, and, in fact, some kriging soft-
ware packages (including STATPAC) have this
feature, resulting in a surface that is not an exact
interpolator. Severa of the nonstochastic methods
discussed in this section depend on a parameter that
controls the deviation from exact interpolation.

The ability to adjust such a parameter when using
these techniques lends a degree of flexibility to the
practitioner, but selecting the best value may not be
straightforward and may involve considerable
subjectivity on the part of the practitioner.

c. Inmost of the following techniques, the
predictor of the process at location x, takes the
form of alinear combination of the measurements
a locations x;, i=1, 2,..., n. Using Z (x,) to denote
an arbitrary predictor (the notation distinguishes
the predictors to be discussed in this section from
the kriging predictor, which is denoted by Z (xo),
the definition of Z (xp) is

n

2x) = 3, wZ (x)

i=1

(7-1)

Although this form is the same form that is taken
by the kriging predictor, the difference isin the way
the coefficients w; are computed.

7-2. Global Measure of Central
Tendency (Simple Averaging)

a. The predictor for the process at any
location x, is the smple average of the measure-
ments; that is, the weights w; are al equal and are
given by Cressie (1991)

S|

(7-2)
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This predictor represents the smoothest possible
predictor surface. In using this predictor, a certain
degree of spatial homogeneity is assumed. No
attempt is made to incorporate any detectable
patterns (or trends) in the mean or variance of the
data as a function of location, and the fact that
measurements made at points that are close to each
other may be related is disregarded. Such a pre-
dictor has the advantage of being very smpleto
compute; it needs no estimation of a variogram or
other model parameters. The disadvantage is that
representing the spatia field by asingle value
ignores much of the relevant and interesting struc-
ture that may be very helpful in improving
predictions.

b. Asdiscussed in section 2-4, if applied in a
stochagtic setting, this predictor would be optimal
(best linear unbiased) if there is no drift and if
residuals are uncorrelated and have a common
variance.

7-3. Simple Moving Average

a. Let h, bethe distance of x, from x;, let hyg,
be the ordered (from smallest to largest) distances,
and fix 1 < k < n. Thentheweightsw; are
(Cressie 1991)

hi < h[kO]
W, =

1
K (7-3)
0, hig > hygq
Thus, this predictor is the average of the measure-
ments at the k nearest locations from x,.

b. If kisequal to n, this predictor isidentical
to the smple average, with weights as given in
Equation 7-2. A choice of k smaller than n reflects
an assumption that the predictor needs to incor-
porate more of the local fluctuation observed in the
data, or, equivalently, that measurements at |oca-
tions near x, should be more informative than
measurements at other locations in predicting z(x,);
the smaller k is, the more variable the predictor. If
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k =1, the predictor is an exact interpolator and is
constant on the VVoronoi polygons (see section 7-5)
induced by the measurement locations.

c. Thereare severa variations of this pre-
dictor. Inone such variation, adistance r may be
fixed (rather than fixing k) and averages over loca-
tions that are within distance r of x, taken. Addi-
tionally, a moving-median may be used rather than
amoving average. Sorting and testing distances
can sow computations relative to obtaining the
simple average, and use of medians rather than
means leads to a more resistant (to outliers)
predictor.

7-4. Inverse-Distance Squared Weighted
Average

a. Theweightsw; are (Journel and Huijbregts
1978)

2
hio
1

2

W,

n
>
j=1

(7-4)

where again h;, is the distance of x, from x;.

b. Inthe smple moving average, weights are
the same, provided measurement locations are
sufficiently close to the prediction location and are
zero otherwise. For the inverse-distance squared
method, weights are forced to decreasein a
smoother manner as distance from the prediction
location increases. This predictor again has the
advantage of being easy to compute. Another
feature of this predictor isthat it is an exact inter-
polator. In addition, the exponent 2 of h,; may be
changed to any positive number, giving the user
some flexihbility in determining the rate of decrease
of weights as afunction of distance from x,. Isaaks
and Srivastava (1989, pp. 257-259) present an
example illustrating the effects on weights of
changing the exponent.



7-5. Triangulation

a. Tocompute this predictor, theregion R is
partitioned into what are referred to as Voronoi
polygonsV,, V,,..., V,,, with V; being the set of
locations closer to measurement location x; than to
any other measurement location. If any two poly-
gons, V; and V;, share acommon boundary, x; and
x; are joined with a straight line. The collection of
all such lines defines what is known as the
Delaunay triangulation. There will be one such
triangle containing the prediction location x,; the
vertices of thistriangle, which are measurement
locations, are labelled x;, x,, and ;. The spatial
prediction at X, will be the planar interpolant
through the coordinates (x;, z(X;)), (X, 2(xy), and
(X1, 2(X4)). Joining X, and x;, X,, and x,, three sub-
triangles are formed. The weightsw; are (Cressie
1991)

w, = A i =],k
=l i=j korl
AJ. + A+ A (7-5)

0, otherwise
where A, is the area of the subtriangle opposite
vertex x;.

b. These definitions areillustrated in Fig-
ure 7-1. In thisfigure, the dashed lines depict the
Voronoi polygons associated with points x,, Xy, -.-,
Xs, and the solid lines define the Delaunay triangu-
lation. Vertices of the triangle containing the pre-
diction point x, are x,, xs, and x, and dotted lines
show the subtriangles defining the associated area
A, A;, A, Forthisexample, j, k, and | inthe
general Equation 7-5 are 1, 5, and 6, so the
weights assigned to points x,, Xs, and xs are,

respectively,

(7-6)
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It is seen that the weight assigned to apoint is pro-
portional to the area of the triangle opposite the
point.

c. Computation of this predictor is dower
than computation of those in sections 7-2, 7-3, and
7-4. The predictor is an exact interpolator, and the
surface produced is continuous, but not differen-
tiable at the edges of the triangulation.

7-6. Splines

a. In spline modeling, the measurements are
interpolated using combinations of certain so-called
basis functions. These basis functions are usually
taken to be piecewise polynomials of acertain
degree, say k, which is determined by the user. The
coefficients of these polynomials are chosen so that
the function values and the first k-1 derivatives
agree at the locations where they join. The larger k
is, the smoother will be the prediction surface.
Spline techniques are often applied in anon-
stochastic framework; in such a context they
represent away of fitting a surface with certain
smoothness properties to measurements at a set of
locations with no explicit consideration of statisti-
cal optimality. Thereis, however, a considerable
body of work inwhich this techniqueis applied in a
stochastic setting. Splines may be used, for
example, in nonparametric regression estimation
problems (Wegman and Wright 1983).

b. A typical approach to formulating a spline
problem isto pose it as an optimization problem.
In one special casg, it is assumed that the first two
derivatives of the prediction surface exist, which is
away of imposing a certain degree of smoothness,
and that the spline function minimizes

iy 2 &) -2 +nQ (77
ni=1

where Q isaterm that depends on the first two
derivatives of the predictor surface. The parame-
ter n is a nonnegative number that needs to be
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Figure 7-1. Diagram showing Voronoi polygons

specified by the user; the value of this parameter
reflects the trade-off between goodness of fit to the
data, measured by the first term, and smoothness,
as measured by Q. If i ischosen to be 0, the
spline is an exact interpolator and passes through
al the datapoints. If n > 0, the splineis not an
exact interpolator. (Splines that are not exact
interpolators are referred to as smoothing splines.)
There are anumber of numerical procedures that
may be used for fitting splines, but allowing the

smoothing parameter m to be > 0 rendersthe
computational problem more complex.

c. Under some conditions a solution to the
optimization problem (Equation 7-7) may aso be
obtained by a kriging algorithm if the smoothing
parameter m is taken to be equa to the variance of
measurement error and if a special form is chosen
for the covariance function. Therefore, in this
situation, spline approximation is a specia type of




kriging. However, the variogram that needs to be
used in the kriging equations to make the kriging
predictor equivalent to the spline predictor is
determined by the basis functions selected for the
spline. Because the type of basis functions used is
subjective on the part of the user, the resulting
equivalent variogram may not be representative of
the true variogram of the data. Because kriging
uses the data to indicate reasonable variogram
choices, kriging has an important advantage over
splines. Another advantage of placing the problem
in the kriging framework is the interpretation of the
smoothing parameter in terms of measurement
errors. In many cases, an objective estimate of the
magnitude of measurement error can be obtained.
The connections between kriging and splines are
discussed further by Wegman and Wright (1983),
Watson (1984), and Cressie (1991).

7-7. Trend-Surface Analysis

a. Trend-surface analysisis the process of
fitting a function, such asthat in Equation 2-43,
using least squares to determine the coefficients
that yield the best fit. Computationally, trend-
surface analysisis equivalent to universal kriging
with an assumption that the Z*(x;) are uncorre-
lated. Thus, thereis no need to estimate a vario-
gram, and readily available regression packages
may be used for estimating the coefficients. Asin
universal kriging, polynomial surfaces are the most
commonly used.

b. When trend surfaces are applied in a sto-
chastic setting, the resulting predictor will be opti-
mal if deviations from the surface are uncorrel ated
and have a common variance.

7-8. Simulation

a. Consder again aregionalized random
variable Z(x), where x isalocation in a two-
dimensional study region R. Kriging is an inter-
polation algorithm that yields spatial predictions Z
(x) that are best, or optimal, in the sense that has
been discussed a somelengthinthisETL. The
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mean-squared prediction error is smallest among
all predictors that are linear in the measurements.
This optimality property islocal, in that the mean-
squared error of predictions at unsampled locations
considered one at atime is minimized, without
specific regard to preservation of global spatial
features. If, however, the actual realization z(x)
could be compared to the kriged prediction surface
based on n measured values, the kriged surface
would be much smoother than the actua surface,
especialy in regions of sparser sampling. Thus,
the kriged surface will be agood and redlistic
representation of reality in the sense that the n
measured values are honored, but it will be less
realistic with respect to global properties, such as
overall variability.

b. The purpose of smulation isto produce
one or more spatial surfaces (realizations) that are
more redlistic in preserving global properties than
the surface produced by interpolation algorithms,
such as kriging. These redlizations are produced
by using numbers that are drawn randomly (Monte
Carlo) to impart variability to the simulated sur-
face, making the simulated surface more realistic in
preserving the overall appearance of the actual
surface. Generally speaking, smulation uses the
idea that the true value of arandom surface may be
expressed as the sum of a predicted value (whichis
obtained by kriging) plus arandom error, which
varies spatially and depends on the random
numbers drawn. Generally a number of indepen-
dent realizations will be generated, and these
realizations will be taken to be equally probable
representations of reality.

c. A smulation algorithm is said to be condi-
tiona if the resulting realizations agree with the
measurements at measurement locations x,, Xs, ...,
X, If the underlying process Z(x) is assumed to be
Gaussian (or if atransformation may be found that
makes the process Gaussian), the most common
method of conditional smulation is known as
sequential Gaussian smulation (Deutsch and
Journel (1992), pp. 141-143). Ancther, more com-
plicated, Gaussian smulation method that is par-
ticularly useful for three-dimensional smulations
because of its computational efficiency isthe
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turning-bands method (Deutsch and Journel 1992,
Journel and Huijbregts 1978).

d. Insequential Gaussian simulation a set of
grid points for which simulated values are desired
is defined and the points are addressed sequentially
from location to location aong a predetermined
path. At each location, a specified set of neighbor-
ing conditioning data is retained, including the
original data and simulated grid-location values at
previoudly traversed grid locations along the path.
Then, arandom number is generated from a
Gaussian distribution with conditional mean and
variance determined using a kriging algorithm, and
the value of the random number determines the
simulated process at this location. The conditional
Gaussian distribution used in smulation is identi-
cal to the conditional distribution discussed in
section 2-6b. Anidea of the computational
reguirements can be obtained from the fact that a
kriging algorithm needs to be applied for each
simulation location. For multiple realizations, if
the path connecting the grid pointsis kept the
same, the kriging equations need to be solved for
only the first smulation. However, implementa-
tion of this procedure needs to take into considera-
tion the assumptions concerning the existence of
drift; the details of such an implementation are
beyond the scope of thisETL.

e. A sequential agorithm like thismay aso
be applied in the context of indicator kriging (see
section 2-6¢). At each grid point along the path, a
(Bernouli) random variable taking on only two
possible values, O or 1, is generated, with the rela-
tive probability of these two values being deter-
mined by indicator kriging applied, asin the
previous paragraph, to the original observed indi-
cator data and the previously simulated indicator
values.

f. Toget anideaof how smulation results
might be used in a risk-assessment setting, assume
again that the underlying process is Gaussian and
that 1,000 conditional realizations have been
generated. If asingle grid point x, (whichiisnot a
measurement point) is considered, then the simu-
ation has produced 1,000 values at x,, which,
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when analyzed in histogram form, approximates
the probability distribution of potential measure-
ments at that location. If an interval with exactly
25 (2.5 percent) of the values less than the lower
end and 25 of the values larger than the upper end
were constructed, the interval would almost corre-
spond, as expected, to the 95-percent prediction
interval to Z (xg) - 1.960y (Xo) to Z (xo) + 1.960
(%) discussed in section 2-6b. Thus, for thissingle
location, the ssmulation has not produced much
more information than kriging alone would have
produced. Therea value of smulation, however,
isthat realizations not just at a single location, but
at al of the grid locations jointly, are obtained.
These redlizations can be used to calculate proba-
bilities associated with any number of spatial loca-
tionstogether. For example, the probability that
the largest (maximum) contaminant value over a
certain subregion is greater than a particular con-
centration might be assessed. (If the word “larg-
est” here were replaced with “average,” then block
kriging could be used to obtain the answer.)

g. A centra point that needs to be empha
sized isthat simulation is especialy useful when
probabilities associated with complicated, usually
nonlinear, functions of the regionalized variables
over aregion need to be analyzed. The maximum
function mentioned in the preceding paragraph is
one simple example. For another example, con-
sider the problem of determining placement of
groundwater monitoring wells to detect and moni-
tor groundwater contamination emanating from a
potential point source. Given an existing set of
hydraulic-head data, kriging might be applied and
flow lines determined from resulting hydraulic-
head gradients. Intersection of the flow line from
the point source with the regional boundary then
might be used to determine monitoring well place-
ment. Conditional smulation would be useful to
determine uncertainty associated with location of
well placement or to give an indication of how
many monitoring wells might be appropriate. In
this case, the variable of interest, well location, isa
complicated function of hydraulic heads so thisisa
problem for which simulation is well-suited. The
reader may refer to Easley, Borgman, and Weber



(1991) for amore detailed discussion of thistype
of application.

h. The complicated functions of interest in
groundwater studies often involve physically based
groundwater flow models. Conditional simulation
may be used, for example, to generate a suite of
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hydraulic-conductivity realizations to be used as
input to amode that produces as output a set of
corresponding hydraulic-head realizations. Weber,
Eadey, and Englund (1991) discuss how ground-
water modeling might be used with conditional
simulation to study the monitoring-well-placement
problem discussed in the preceding paragraph.
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Appendix B:

Anglefor directiona variogram

Slope of variogram

Generic constant used for cutoff value
in probability distribution or indicator
transformation

Kriging error

Reduced kriging error

Explanatory variables used in drift
equations

Nugget of variogram
Lag or distance between two data points
Number of data points

Number of locations in a given block
Range of variogram

Sill of variogram

Weight

Location in terms of coordinates u and v
Measurement of Z at location x

Kriging estimate using measured data
Areaof triangle

Areadesignation in block kriging

Population covariance function

Sample covariance function
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Notation

C(x,,x,) Covariance of data values at locations

X; and X,
D; Difference in vaues between data
pointsi and j
E Expectation

I(.) Indicator function
K Number of variogram bins

N(.) Number of squared differencesin
variogram bin

P Probability
S,2  Sample variance on n observations
\ Voronoi polygon
Var Population variance

W(x) Co-kriging random variable at
location x

Y(x) Transformed variable at location x
z Regionalized random variable
Z(x) Potentia value of Z at location x

Z(x) Predictor or estimate of Z at location
X, obtained from kriging

Z*(x) Residuds of Z(x)
f(x) Arbitrary predictor of Z at location x
Z Sample mean of n observations

B Regression coefficient used in polyno-
mial representation for drift
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Yy Sample variogram o(x)  Spatial standard deviation at location
X

vy Theoretical variogram -
o%(x)  Spatial variance at location x
vy(h)  Theoretical variogram for lag h

o(x)  Kriging standard deviation at

A Optimization coefficient location x
n Parameter used in spline analysis oi(x) Kriging variance at location x
p (h) Corréation function as function of h M(x)  Spatial mean at location x
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